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Introduction

Computerassisted pronunciatioftraining (CAPT) hasattracted
Increasing research interesécently, partly dudo the rapid
progress ofautomatic speech recognitio(ASR technology

B Deep Learning tncreasing Computational Power'+tEC  $ AOA <

Computer-Assisted Pronunciation Training (CAPT)

(L2) Test
Utterance *| Mispronunciation Error Pattern , Feedback to
Detection Diagnosis Learner

Text Prompt

(Canonical Pronunciation)

Mispronunciation detectior{MD) is anessentiaimodule in a

CAPT system

B Assistsecondlanguage (L2) learnet® pinpoint incorrect pronunciations
In a given utterancan order to improveaheir spokenproficiency

B E.g., phonelevel orword-levelsubstitution errors, insertion errors,
deletion errors, among others




Technical Framework foriMD

Schematicdiagramof a conventional (mainstream)
framework for mispronunciation detection
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Forced’Alignment:& Generating Competing Phc
Hypotheses (in'thdest Phase)
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GMM-HMM: hidden Markov model (HMM) with Gaussian mixture mod Mixture Covariance
(GMM) for estimating statéevel observation probability Weight Matrix Observation Vector
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Phonelevel Decision Feature Extraction

Adopt the commonlyusedgoodnessof pronunciation (GOP
measure for decision feature extraction, based on fi®ne-

level posterior probabilitesomputed withforced alignment
andacoustic models
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PhonelevelDecision-Functions

As to the decision function, we can addpe logistic
sigmoid function for our purpose D)

(U = 1 A\

1+exga(GOPg,n) + b)] a(GOP@,n) + b)

1 Takethe GOP score as the input andtput a decision score, ranging
between 0 and 1

 D(u,n)2 ¢ implies the occurrence of mispronunciation for phofig n

I The higher the decision scor®(u,n) , the more likely theGhons
mispronounced
{ The parametersa, b and the threshbold are empirically tuned in

practice(one size fits all: all phones share the same set of parameters/threshold




Our Research Contributions forrM/2)

Weexplore recent advances deep learning(especially
deep neural networks DNN) to achieve better speech
feature extraction and acoustimodeling

4
N

2. Aneffective learning approach is proposed, which
estimates the DNNoased acoustic models by optimizing
an objective directly linked to the ultimate evaluation
metric of mispronunciatiortdetection

3. Decisionfunctionsof different levelsof granularity, with
either phone or sub-phonefsenong-dependent
parameterization,are alscexploredfor mispronunciation
detection




‘ Our Research Contributions fMD (2/2)

/‘ . Schematic diagranof our proposed approachto
Q mispronunciation detection
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‘ . We leveragerarious stateof-the-art deep neural network
‘ (DNN) architecturegqin place ofGMM ) formodeling the
" state emission probabilities in HMM (denoted by DNWIM)
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f (Q: sigmoid,hyperbolic or rectifiedlinearunit (ReLU)functions

- — Model parameters of DNN can be estimated wi
»;.;:.3 ik ’Jﬂ- | Observation the error back-propagation algorithm and
— sl “raw spectrogram Stochastic gradient decent(SGD).




‘ CNNfor Acoustic:Modeling in/MD
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‘ . Alternatively, we also explore to use the convolutional
neuralnetworks(CNN) toreplace GMM for predicting the

b state-level likelihoods of acoustic feature vectors

B Schematic Depiction of Usingonvolutional Neural Networks (CNN) for
acoustic modeling (i.e., CNINNMM)

multi-layers of
i) ‘ full connected neurons
(DNN)




‘ Instead of training the acoustic modelgth criteria that
|

‘ 2. Maximum-Performance&riterion Trainingor MD

maximize the ASRerformance, we attempt to trairthe
acoustic modelsvith an objective function thatirectly
maximizesthe performance of MD

B For examplethe maximum F1-scorecriterion (MFQ
2Cp1n _ 2Qip48 hy [(D(u,n) GH(u,n)
Cp +Cq [85=18 py 1 (D(u,n))] + Cyy
ZQU_la 1D (u,n) H(u, n)
[aY_;a Nu D(u,n)) + Cy

X(d) =

Where denotes the set oparameters of both the DNN-HMM based acoustic
models andthe decisionfunction

#  is the total number of phone segments in the training set that are identified as
being mispronounced simultaneously by both therrent mispronunciation
detection moduleandthe majority vote of humarassessors

Optimized by stochastigyradient ascent algorithm + chain rule for differentiation




‘ ApMcorefor Performance Evaluation
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. The default evaluation metritor mispronunciation
\ detection employedin thisworkis theFl-score which is a
e harmonic mean of precision amdcall




