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·Computer assisted pronunciation training (CAPT) has attracted 
increasing research interest recently, partly due to the rapid 
progress of automatic speech recognition (ASR) technology  

ƁDeep Learning + Increasing Computational Power + "ÉÇ $ÁÔÁ Ͻ ȣ 
 

 

 

 

 

 

·Mispronunciation detection (MD) is an essential module in a 
CAPT system 

ƁAssist second-language (L2) learners to pinpoint incorrect pronunciations 
in a given utterance in order to improve their spoken proficiency 

ƁE.g., phone-level or word-level substitution errors, insertion errors, 
deletion errors, among others 

Introduction 
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Technical Framework for MD  
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·Schematic diagram of a conventional (mainstream) 
framework for mispronunciation detection 
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Forced Alignment & Generating Competing Phone 
Hypotheses (in the Test Phase)  
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·Adopt the commonly-used goodness of pronunciation (GOP) 
measure for decision feature extraction, based on the phone-
level posterior probabilities computed with forced alignment 
and acoustic models  
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Phone-level Decision Feature Extraction 
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·As to the decision function, we can adopt the logistic 
sigmoid function for our purpose 

 

 

 

 

 
¶Take the GOP score as the input and output a decision score, ranging 

between 0 and 1 

¶                             implies the occurrence of mispronunciation for phone 

¶The higher the decision score,                      , the more likely the phone             is 
mispronounced     

¶ The parameters              and the threshold        are empirically tuned in 
practice (one size fits all: all phones share the same set of parameters/threshold) 

Phone-level Decision Functions 
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1. We explore recent advances in deep learning (especially 
deep neural networks, DNN) to achieve better speech 
feature extraction and acoustic modeling 

 

2. An effective learning approach is proposed, which 
estimates the DNN-based acoustic models by optimizing 
an objective directly linked to the ultimate evaluation 
metric of mispronunciation detection 

 

3. Decision functions of different levels of granularity, with 
either phone- or sub-phone(senone)-dependent 
parameterization, are also explored for mispronunciation 
detection 

Our Research Contributions for MD (1/2) 
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·Schematic diagram of our proposed approach to 
mispronunciation detection 

Our Research Contributions for MD (2/2) 
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·We leverage various state-of-the-art deep neural network 
(DNN) architectures (in place of GMM ) for modeling the 
state emission probabilities in HMM (denoted by DNN-HMM) 

1. Deep Learning for Acoustic Modeling 
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deeper layers, 
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·Alternatively, we also explore to use the convolutional 
neural networks (CNN) to replace GMM for predicting the 
state-level likelihoods of acoustic feature vectors 
ƁSchematic Depiction of Using Convolutional Neural Networks (CNN) for 

acoustic modeling (i.e., CNN-HMM)  

CNN for Acoustic Modeling in MD 
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· Instead of training the acoustic models with criteria that 
maximize the ASR performance, we attempt to train the 
acoustic models with an objective function that directly 
maximizes the performance of MD 

ƁFor example, the maximum F1-score criterion (MFC) 

 

 

 

 
¶Where  denotes the set of parameters of both the DNN-HMM based acoustic 

models and the decision function 

¶#᷊  is the total number of phone segments in the training set that are identified as 
being mispronounced simultaneously by both the current mispronunciation 
detection module and the majority vote of human assessors 

¶Optimized by stochastic gradient ascent algorithm + chain rule for differentiation  

2. Maximum Performance  Criterion Training for MD 
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·The default evaluation metric for mispronunciation 
detection  employed in this work is the F1-score, which is a 
harmonic mean of precision and recall 

Appendix: F1-Score for Performance Evaluation 
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