Artificial Intelligence

Berlin Chen 2005
Course Contents

• The theoretical and practical issues for all disciplines of Artificial Intelligence (AI) will be considered
 – AI is interdisciplinary!

• Foundational Topics to Covered
 – Intelligent Agents
 – Search, Advanced Search, Adversarial Search (Game Playing), Constraint Satisfaction Problems (CSP)
 – Propositional and Predicate Logic, Inference and Resolution
 – Rules and Expert Systems
 – Probabilistic Reasoning and Bayesian Belief Networks
 – Others (Hidden Markov Models, Graphical Models, Neural Networks, Genetic Algorithms, etc.)
Textbook and References

• Textbook:
 http://aima.cs.berkeley.edu/

• References:
 – B. Coppin. *Artificial Intelligence Illuminated*. Jones and Bartlett, 2004
Grading

• Midterm or Final: 30%
• Homework: 25%
• Project/Presentation: 30%
• Attendance/Other: 15%
Introduction

Berlin Chen 2005

Reference:
What is AI?

• “[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning…” (Bellman, 1978)

• “The exciting new effort to make computer think … machines with mind, in the full and literal sense.” (Haugeland, 1985)

• “The study of mental faculties through the use of computational models” (Charniak and McDermott, 1985)

• “The study of how to make computers do things at which, at the moment, people do better.” (Rich and Knight, 1991)
What is AI?

- The study of the computations that it possible to perceive, reason, and act.” (Winston, 1992)
- “AI…is concerned with intelligent behavior in artifacts.” (Nilsson, 1998)

AI systemizes and automates intellectual tasks as well as any sphere of human intellectual activities.
- Duplicate human facilities like creativity, self-improvement, and language use
- Function autonomously in complex and changing environments

AI still has openings for several full-time Einsteins!
Categorization of AI

<table>
<thead>
<tr>
<th>Thought/ reasoning</th>
<th>fidelity</th>
<th>rationality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Systems that think like humans</td>
<td>Systems that think rationally</td>
</tr>
<tr>
<td>behavior</td>
<td>Systems that act like humans</td>
<td>Systems that act rationally</td>
</tr>
</tbody>
</table>

- Physical simulation of a person is unnecessary for intelligence?
 - Humans are not necessarily “rational”
Acting Humanly: The Turing Test

• Turing test: proposed by Alan Turing, 1950

- The test is for a program to have a conversation (via online typed messages) with an interrogator for 5 minutes
- The interrogator has to guess if the conversation is with a machine or a person
- The program passes the test if it fools the interrogator 30% of the time
Acting Humanly: The Turing Test

• Turing’s Conjecture
 – At the end of 20 century a machine with 10 gigabytes of memory would have 30% chance of fooling a human interrogator after 5 minutes of questions

• Problems with Turing test
 – The interrogator may be incompetent
 – The interrogator is too lazy to ask the questions
 – The human at the other hand may try to trick the interrogator
 – The program doesn’t have to think like a human
 –
Acting Humanly: The Turing Test

• The computer would possess the following capabilities to pass the Turing test
 • **Natural language** *(Speech processing?)*
 • Knowledge representation
 • Automated reasoning
 • Machine learning/adaptation
 • Computer vision
 • Robotics

Six disciplines compose most of AI

So-called "total Turing Test"

Imitate humans or learn something from humans?
Acting Humanly: The Turing Test

• However, scientists devoted much effort to studying the underlying principles of intelligence than passing Turing test!
 – E.g. Aircrafts vs. birds
 – E.g. Boats/submarines vs. fishes/dolphins/whales
 – E.g. Perception in speech/vision
Thinking Humanly: Cognitive Modeling

• Get inside the actual workings of human minds through
 – Introspection
 – Psychological experiments

• Once having a sufficiently precise theory of the mind, we can express the theory as a computer program!

• Cognitive science - interdisciplinary
 – Computer models from AI
 – Experimental techniques from psychology

An algorithm performs well \(\leftrightarrow\) A good model of human performance
Thinking Rationally: Laws of Thought

• Correct inference

 “Socrates is a man; all men are mortal; therefore, Socrates is mortal”

 – Correct premises yield correct conclusions

• Formal logic

 – Define a precise notion for statements all things and the relations among them

 • Knowledge encoded in logic forms

 – Main considerations

 • Not all things can be formally repressed in logic forms
 • Computation complexity is high
Acting Rationally: Rational Agents

- An agent is just something that perceives and acts
 - E.g., computer agents vs. computer programs
 - Autonomously, adaptively, goal-directly

- Acting rationally: doing the right thing
 - The right thing: that which is expected to maximize the goal achievement, given the available information
 - Don’t necessarily involve thinking/inference

- Rationality \leftrightarrow Inference

- The study of AI as rational-agent design
Acting Rationally: Rational Agents

![Diagram showing the relationship between the environment, agent, sensors, percepts, actions, and actuators.]}
Foundations of AI

Psychology
Linguistics
Neuroscience
Economics
Philosophy
Computer Engineering
Control Theory
AI
Foundations of AI

• **Philosophy**: (428 B.C. - present)

 Logic, methods of reasoning

 – A set of rules that can describe the formal/rational parts of mind

 – Mind as a physical system / computation process

 – Knowledge acquired from experiences and encoded in mind, and used to choose right actions

 – Learning, language, rationality
Foundations of AI

• **Mathematics** (C. 800 - present)

 Formal representation and proof

 – Tools to manipulate logical/probabilistic statements
 – Groundwork for computation and algorithms

 Three main contributions:
 - (decidability of) logic, (tractability of) computation, and probability (for uncertain reasoning)
Foundations of AI

• **Economics** (1776 - present)

 Formal theory for the problem of making decisions
 – Utility: the preferred outcomes
 – Decision theory
 – Game theory (賽局)
 – Operations research
 • Payoffs from actions may be far in the future
Foundations of AI

• **Neuroscience** (1861- present)

 Brains cause minds

 - The mapping between areas of the brain and the parts of body they control or from which they receive sensory input

Ramón y Cajal (拉蒙卡哈)
Foundations of AI

- **Psychology** *(1879- present)*
 Brains as information-processing devices
 - Knowledge-based agent
 - Stimulus translated into an internal representation
 - Cognitive process derive new international representations from it
 - These representations are in turn retranslated back into action

- **Computer engineer** *(1940- present)*
 Artifacts for implementing AI ideas/computation
 - (Software) programming languages
 - The increase in speed and memory
Foundations of AI

• **Control theory** (1948- present)
 Maximizing an objective function over time
 – Minimize the different between current and goal states

• **Linguistics** (1957- present)
 How does language relate to thought?
 – Languages fit information processing model
 – Understanding languages requires an understanding of subject matter and context
History of AI

• 1943-55 Gestation of Artificial Intelligence
 McCulloch & Pitt: Boolean circuit model of neurons
 Turing’s “Computing Machinery and Intelligence”

• 1956 The birth of Artificial Intelligence
 Dartmouth meeting: “Artificial Intelligence” adopted
 (McCarthy, Minsky, Shannon, …)

• 1966-85 Neural network research almost disappears
 No efficient Training Algorithms for Layered networks

• 1969-79 Knowledge-based systems

• 1980-88 Expert system industry booms
 A million dollars to billions of dollars

• 1986- Neural networks return to popularity

• 1988-93 Expert system industry busts: “AI winter”

• 1995- Agents everywhere …
Advances in AI

- **Search Algorithms** like genetic algorithms

- Machine Learning
 - Hidden Markov Models
 - Neural Networks
 - Bayesian Networks
 - Support Vector Machines

- Data Mining
Research Prototypes

- MIT Microworlds: “analogy problems” (1968)

- MIT Microworlds: “blocks world” (1972)
Research Prototypes

• ELIZA: A simple natural-language understanding program (1966)

 User1: Men are all alike.
 ELIZA1: IN WHAT WAY
 User2: They’re always bugging us about something or other.
 ELIZA2: CAN YOU THINK OF A SPECIAL EXAMPLE
 User3: Well, my boyfriend made me come here.
 ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
 User4: He says I’m depressed much of the time.
 ELIZA4: I AM SORRY TO HERE YOU ARE DEPRESSED

s/.*/ all .*/IN WHAT WAY/
s/.*/ always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/
s/.*/ I’m (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
Research Prototypes

- CMU ALVIN project, 1989 (Autonomous Land Vehicle In a Neural Network)
 - 1200 computer-generated images as training examples
 - Half-hour training
 - The salient features have been directly acquired by the network itself

An additional information from previous image indicating the darkness or lightness of the road
Research Prototypes

• IBM Deep Blue (1997)

– Let IBM’s stock increase by $18 billion at that year
Research Prototypes
Research Prototypes

• Sony AIBO robot
 – Available on June 1, 1999
 – Weight: 1.6 KG
 – Adaptive learning and growth capabilities
 – Simulate emotion such as happiness and anger
Research Prototypes

• Honda ASIMO (Advanced Step in Innovate MObility)
 – Born on 31 October, 2001
 – Height: 120 CM, Weight: 52 KG
Research Prototypes

• MIT CSAIL (電腦科學與人工智慧)
Research Prototypes

- MIT Oxygen Project: Spoken Interface (CMU, Delta)

 ubiquitous

- Speech recognition/synthesis
- Natural language understanding/generation
- Machine translation
SR & AI?

From Prof. Chin-Hui Lee
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/22</td>
<td>Course Overview & Introduction</td>
</tr>
<tr>
<td>9/28</td>
<td>Agents</td>
</tr>
<tr>
<td>10/6</td>
<td>Searching: Uninformed Search: DFS, BFS, IDS, etc.</td>
</tr>
<tr>
<td>10/13</td>
<td>Searching: Informed Search: Greedy Best-First, A* Search, etc.</td>
</tr>
<tr>
<td>10/20</td>
<td>Searching: Informed Search: Local Search, Genetic algorithms, etc.</td>
</tr>
<tr>
<td>10/27</td>
<td>Searching: Constraint Satisfaction</td>
</tr>
<tr>
<td>11/3</td>
<td>Searching: Adversarial Search (Game Playing) (deterministic)</td>
</tr>
<tr>
<td>11/10</td>
<td>Midterm</td>
</tr>
<tr>
<td>11/17</td>
<td>Logical Agent & Propositional Logic</td>
</tr>
<tr>
<td>11/24</td>
<td>First-Order Logic</td>
</tr>
<tr>
<td>12/1</td>
<td>Inference and Planning</td>
</tr>
<tr>
<td>12/8</td>
<td>Rule-based/Fuzzy/Frame-based Expert Systems</td>
</tr>
<tr>
<td>12/15</td>
<td>Artificial Neural Networks</td>
</tr>
<tr>
<td>12/22</td>
<td>Paper Survey (1/2)</td>
</tr>
<tr>
<td>12/23</td>
<td>Paper Survey (2/2)</td>
</tr>
<tr>
<td>1/5</td>
<td>Final</td>
</tr>
</tbody>
</table>