Retrieval Performance Evaluation

- Measures

Berlin Chen 2005

Reference:
1. Modern Information Retrieval, chapter 3
Introduction

• Functional analysis
 – Functionality test or error analysis instead

• Performance evaluation
 – E.g.: **Data retrieval system**
 • The shorter the response time, the smaller the space used, the better the system is
 • Tradeoff between time and space

• **Retrieval** performance evaluation
 – E.g.: **Information retrieval system**
 • Relevance of retrieved documents is important, besides time and space
 (quality of the answer set)
 – **Discussed here!**
Introduction (cont.)

• **Retrieval** performance evaluation (cont.)

```
The Test Reference Document Collection

The Example Query Tasks

IR System Strategy/Model

Retrieved Documents

Evaluation Measure

Relevance Judgment by Specialists

Goodness?
Recall?
Precision?
Or others
```
Introduction (cont.)

• The Test Reference Collection
 – A collection of documents
 – A set of example information requests (queries)
 – A set of relevant documents for each information request

• Evaluation measure
 – Qualify the similarity between the set of documents retrieved and the set of relevant documents provided (by the specialists)
 – Provide an estimation of the goodness of the retrieval strategy
Batch and Interactive Mode

Consider retrieval performance evaluation

- **Batch mode** (laboratory experiments)
 - The user submits a query and receives an answer back
 - **Measure**: the quality of the generated answer set
 - Still the dominant evaluation (Discussed here!)
 - Main reasons: repeatability and scalability

- **Interactive mode** (real life situations)
 - The user specifies his information need through a series of interactive steps with the system
 - **Measure**: user effort, interface design, system’s guidance, session duration
 - Get a lot more attention in 1990s
Recall and Precision

- **Recall** \(\frac{|R_a|}{|R|} \)
 - The fraction of the relevant documents which has been retrieved

- **Precision** \(\frac{|R_a|}{|A|} \)
 - The fraction of the retrieved documents which is relevant
Recall and Precision (cont.)

- Recall and precision assume that all the documents in the answer set have been examined (or seen).

- However, the user is not usually presented with all the documents in the answer set A at once:
 - Sort the document in A according to a degree of relevance.
 - Examine the ranked list starting from the top document (increasing in recall, but decreasing in precision).
 - Varying of recall and precision measures.
 - A precision versus recall curve can be plotted.

![Precision vs Recall Curve](attachment:image.png)
Recall and Precision (cont.)

• Example 3.2
 – $R_q = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\}$
 • Ten relevant documents, five included in Top 15
 – A ranking of the documents for the given query q

<table>
<thead>
<tr>
<th>Rank</th>
<th>Document (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$d_{123} \bullet$</td>
</tr>
<tr>
<td>2.</td>
<td>d_{84}</td>
</tr>
<tr>
<td>3.</td>
<td>$d_{56} \bullet$</td>
</tr>
<tr>
<td>4.</td>
<td>d_6</td>
</tr>
<tr>
<td>5.</td>
<td>d_8</td>
</tr>
<tr>
<td>6.</td>
<td>$d_9 \bullet$</td>
</tr>
<tr>
<td>7.</td>
<td>d_{511}</td>
</tr>
<tr>
<td>8.</td>
<td>d_{129}</td>
</tr>
<tr>
<td>9.</td>
<td>d_{187}</td>
</tr>
<tr>
<td>10.</td>
<td>$d_{25} \bullet$</td>
</tr>
<tr>
<td>11.</td>
<td>d_{38}</td>
</tr>
<tr>
<td>12.</td>
<td>d_{48}</td>
</tr>
<tr>
<td>13.</td>
<td>d_{250}</td>
</tr>
<tr>
<td>14.</td>
<td>d_{113}</td>
</tr>
<tr>
<td>15.</td>
<td>$d_3 \bullet$</td>
</tr>
</tbody>
</table>

- $(P,R)_1 = (100\%,10\%)$
- $(P,R)_6 = (50\%,30\%)$
- $(P,R)_{15} = (33\%,50\%)$
- $(P,R)_3 = (66\%,20\%)$
- $(P,R)_{10} = (40\%,40\%)$
Recall and Precision (cont.)

• Example 3.2 (count.)

- The precision versus recall curve is usually plotted based on 11 standard recall levels: 0%, 10%, …, 100%
- In this example
 - The precisions for recall levels higher than 50% drop to 0 because no relevant documents were retrieved
 - There was an interpolation for the recall level 0%
Interpolated Recall-Precision Curve

• Since the recall levels for each query might be distinct from the 11 standard recall levels
 – Utilization of an interpolation procedure is necessary!

• Example 3.3
 – \(R_q = \{d_3, d_{56}, d_{129}\} \)
 • Three relevant documents

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(d_{123})</td>
<td></td>
<td>6.</td>
<td>(d_9)</td>
<td></td>
<td>11.</td>
</tr>
<tr>
<td>2.</td>
<td>(d_{84})</td>
<td></td>
<td>7.</td>
<td>(d_{511})</td>
<td></td>
<td>12.</td>
</tr>
<tr>
<td>3.</td>
<td>(d_{56}) (\bullet)</td>
<td></td>
<td>8.</td>
<td>(d_{129}) (\bullet)</td>
<td></td>
<td>13.</td>
</tr>
<tr>
<td>4.</td>
<td>(d_{6})</td>
<td></td>
<td>9.</td>
<td>(d_{187})</td>
<td></td>
<td>14.</td>
</tr>
<tr>
<td>5.</td>
<td>(d_{8})</td>
<td></td>
<td>10.</td>
<td>(d_{25})</td>
<td></td>
<td>15.</td>
</tr>
</tbody>
</table>

\[(P,R)_3 = (33.3\%, 33.3\%)\]
\[(P,R)_8 = (25\%, 66.6\%)\]
\[(P,R)_{15} = (20\%, 100\%)\]

• How about the precisions at recall levels 0\%, 10\%,... ,90\%
Interpolated Recall-Precision Curve (cont.)

- Interpolated Precisions at standard recall levels

\[\overline{P}(r_j) = \max_{r_j \leq r \leq r_{j+1}} P(r) \]

- the \(j \)-th standard recall level (e.g., \(r_5 \) is recall level 50%)

- Example 3.3 (cont.)

<table>
<thead>
<tr>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.3%</td>
<td>0%</td>
</tr>
<tr>
<td>33.3%</td>
<td>10%</td>
</tr>
<tr>
<td>33.3%</td>
<td>20%</td>
</tr>
<tr>
<td>33.3%</td>
<td>30%</td>
</tr>
<tr>
<td>25%</td>
<td>40%</td>
</tr>
<tr>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>25%</td>
<td>60%</td>
</tr>
<tr>
<td>20%</td>
<td>70%</td>
</tr>
<tr>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td>20%</td>
<td>90%</td>
</tr>
<tr>
<td>20%</td>
<td>100%</td>
</tr>
</tbody>
</table>

\[\overline{P}_i(r_j) = \max_{r_j \leq r \leq r_{j+1}} P_i(r) \]
Interpolated Recall-Precision Curve (cont.)

- Example 3.3 (cont.)
 - Interpolated precisions at 11 standard recall levels
Interpolated Recall-Precision Curve (cont.)

• Evaluate (average) the retrieval performance over all queries

\[\bar{P}_{all}(r_j) = \frac{1}{N_q} \sum_{i=1}^{N_q} \bar{P}_i(r_j) \]

On different recall levels

• Example 3.4: average interpolated recall-precision curves for two distinct retrieval algorithms

– Difficult to determine which of these two results is better
Interpolated Recall-Precision Curve (cont.)

- Trade-off between Recall and Precision

 return most relevant docs but miss many useful ones, too

 return all relevant docs but includes lots of junk

 the ideal case
Interpolated Recall-Precision Curve (cont.)

• **Alternative**: average precision at a given document cutoff values (levels)

 – E.g.: compute the average precision when Top 5, 10, 15, 20, 30, 50 or 100 relevant documents have been seen

 – Focus on how well the system ranks the Top k documents

 • Provide additional information on the retrieval performance of the ranking algorithm

 – We can take (weighted) average over results
Interpolated Recall-Precision Curve (cont.)

• Advantages
 – Simple, intuitive, and combined in single curve
 – Provide quantitative evaluation of the answer set and comparison among retrieval algorithms
 – A standard evaluation strategy for IR systems

• Disadvantages
 – Can’t know true recall value except in small document collections (document cutoff levels are needed!)
 – Assume a strict document rank ordering
Single Value Summaries

• Interpolated recall-precision curve
 – Compare the performance of retrieval algorithms over a set of example queries
 • Might disguise the important anomalies
 – How is the performance for each individual query?

• A single precision value (for each query) is used instead
 – Interpreted as a summary of the corresponding precision versus recall curve
 • Just evaluate the precision based on the top 1 relevant document?
 • Or averaged over all relevant documents
Single Value Summaries (cont.)

- **Method 1: Average Precision at Seen Relevant Documents**
 - A single value summary of the ranking by averaging the precision figures obtained after each new relevant doc is observed

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. d_{123}</td>
<td>(P=1.0)</td>
<td></td>
</tr>
<tr>
<td>2. d_{84}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. d_{56}</td>
<td>(P=0.66)</td>
<td></td>
</tr>
<tr>
<td>4. d_{6}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. d_{8}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. d_{9}</td>
<td>(P=0.5)</td>
<td></td>
</tr>
<tr>
<td>7. d_{511}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. d_{129}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. d_{187}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. d_{25}</td>
<td>(P=0.4)</td>
<td></td>
</tr>
<tr>
<td>11. d_{38}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. d_{48}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. d_{250}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. d_{113}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. d_{3}</td>
<td>(P=0.3)</td>
<td></td>
</tr>
</tbody>
</table>

Example 3.2

(1.0+0.66+0.5+0.4+0.3)/5=0.57

- It favors systems which retrieve relevant docs quickly (early in the ranking)
- But when doc cutoff levels were used
 - An algorithm might present a good average precision at seen relevant docs but have a poor performance in terms of overall recall
Mean Average Precision (mAP)

- Averaged at relevant docs and across queries
 - E.g. relevant docs ranked at 1, 5, 10, precisions are 1/1, 2/5, 3/10,
 - non-interpolated average precision (or called Average Precision at Seen Relevant Documents in textbook)
 \[(1/1+2/5+3/10)/3\]
 - Mean average Precision (mAP)

\[
\frac{1}{|Q|} \sum_{q=1}^{|Q|} (\text{non–interpolated average precision})_q
\]

- Widely used in IR performance evaluation
Single Value Summaries (cont.)

• **Method 2: R-Precision**
 – Generate a single value summary of ranking by computing the precision at the R-th position in the ranking

 • Where R is the **total number of relevant docs** for the current query

\[
R_q = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\} \\
R_q = \{d_3, d_{56}, d_{129}\}
\]

• 10 relevant documents (●)

• 3 relevant document (◆)

=> R-precision = 4/10 = 0.4

=> R-precision = 1/3 = 0.33
Single Value Summaries (cont.)

• Method 3: Precision Histograms
 – Compare the retrieval history of two algorithms using the R-precision graph for several queries
 • A visual inspection
 – Example 3.5
 • Algorithms A, B
 • The difference of R-precision for the i-th query:

\[RP_{A/B}(i) = RP_A(i) - RP_B(i) \]
Single Value Summaries (cont.)

- Method 3: Precision Histograms (cont.)
 - Example 3.5 (cont.)

- A positive $RP_{A/B}(i)$ indicates that the algorithm A is better than B for the i-th query and vice versa
Single Value Summaries (cont.)

• Method 4: Summary Table Statistics
 – A statistical summary regarding the set of all the queries in a retrieval task
 • The number of queries used in the task
 • The total number of documents retrieved by all queries
 • The total number of relevant documents which were effectively retrieved when all queries are considered
 • The total number of relevant documents which could have been retrieved by all queries
 • …
Precision and Recall Appropriateness

• The proper estimation of maximal recall requires knowledge of all the documents in the collection.

• Recall and precision are related measures which capture different aspects of the set of retrieved documents.

• Recall and precision measure the effectiveness over queries in batch mode.

• Recall and precision are defined under the enforcement of linear ordering of the retrieved documents.
 – Partial Ordering?
Alternative Measures

• Method 1: The Harmonic Mean (F Measure)
 – The harmonic mean F of recall and precision

\[
F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}} = \frac{2 \cdot P(j) \cdot r(j)}{P(j) + r(j)}
\]

• $r(j)$: the recall for the j-th document in the ranking
• $P(j)$: the precision for the j-th document in the ranking

– Characteristics
 • $F = 0$: no relevant documents were retrieved
 • $F = 1$: all ranked documents are relevant
 • A high F achieved only when both recall and precision are high
 • Determination of the maximal F
 – Best possible compromise between recall and precision
Alternative Measures (cont.)

• Method 2: The E Measure
 – Another measure which combines recall and precision
 – Allow the user to specify whether he is more interested in recall or precision

\[
E(j) = 1 - \frac{1 + b^2}{b^2 \frac{1}{r(j)} + \frac{1}{P(j)}} = 1 - \frac{(1 + b^2) \cdot P(j) \cdot r(j)}{b^2 \cdot P(j) + r(j)}
\]

• Characteristics
 • \(b = 1 \): act as the complement of F Measure
 • \(b > 1 \): more interested in precision
 • \(b < 1 \): more interested in recall

van Rijsbergen 1979
Alternative Measures (cont.)

• Method 3: User-Oriented Measures
 – Problematic assumption of recall and precision
 • The set of relevant documents for a query is the same, independent of the user
 – However, different users have a different interpretation of document relevance

 – User-oriented measures are therefore proposed
 • Coverage ratio
 • Novelty ratio
 • Relative recall
 • Recall effect
Alternative Measures (cont.)

- Method 3: User-Oriented Measures (cont.)

 - Coverage ratio = \(\frac{|R_k|}{|U|} \)
 - Novelty ratio = \(\frac{|R_u|}{|R_u| + |R_k|} \)

 Measure the ability to reveal new relevant docs

 - Relative recall = \(\frac{|R_k| + |R_u|}{|U|} \)
 - Recall effect = \(\frac{|U|}{|A|} \)
Alternative Measures (cont.)

• Coverage ratio
 – The fraction of relevant docs known to the user which has been retrieved
 – High → find most of the relevant docs user expected to see
 \[
 \frac{|R_k|}{|U|}
 \]

• Novelty ratio
 – The fraction of relevant docs retrieved which is unknown to the user
 – High → find (reveal) many new relevant docs (information) the user previously unknown
 \[
 \frac{|R_u|}{|R_u| + |R_k|}
 \]
Alternative Measures (cont.)

• Relative recall
 – The ratio between the number of relevant docs found by the system and the number of relevant docs the user expects to find
 \[
 \frac{|R_k| + |Ru|}{|U|}
 \]

• Recall effect
 – The ratio between the number of relevant docs the user expects to find and the number of docs found by the system
 \[
 \frac{|U|}{|A|}
 \]