Statistical Inference:
 n-gram Models over Space Data

Chia-Hao Lee

Reference: 1. Foundation of Statistical Natural Language Processing
 2. The Projection of Professor Berlin Chen
outline

• N-gram
• MLE
• Smoothing
 – Add-one
 – Lidstone’s Law
 – Witten-Bell
 – Good-Turing
• Back-off Smoothing
 – Simple linear interpolation
 – General linear interpolation
 – Katz
 – Kneser-Ney
• Evaluation
Introduction

• Statistical NLP aims to do statistical inference for the field of natural language.

• In general, statistical inference consists of taking some data and then making some inferences about this distribution.
 – Use to predict prepositional phrase attachment

• A running example of statistical estimation: language modeling
Reliability vs. Discrimination

• In order to do inference about one feature, we wish to find other features of the model that predict it.
 – Stationary model

• Based on various classificatory, we try to predict the target feature.

• We use the equivalence classing to help predict the value of the target feature.
 – Independence assumptions: Features are independent
Reliability vs. Discrimination

- The more classificatory features that we identify, the more finely conditions that we can predict the target feature.

- Diving the data into many bins gives us greater discrimination.

- Using a lot of bins, a particular bin may contain no or a very small number of training instances, and we can not do statistical estimation.

- Is there a good compress between two criteria??
N-gram models

• The task of predicting the next word can be stated as attempting to estimate the probability function P:

$$P(w_n | w_1, \ldots, w_{n-1})$$

• History: classification of the previous words

• Markov assumption: only the last few words affect the next word

• The same $n-1$ words are placed in the same equivalence class:
 - $(n-1)$ order Markov model or n-gram model
N-gram models

• Naming:
 – *gram* is a Greek root and so should be put together with number Greek prefix
 – Shannon actually did use the term *digram*, but this usage has not survived now.
 – Now we always use *bigram* instead of *digram*.
N-gram models

• For example:
 She swallowed the large green ____ .
 – “swallowed” influence the next word more stronger than “the large green ____ “.

• However, there is the problem that if we divide the data into too many bins, then there are a lot of parameters to estimate.
N-gram models

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st order (bigram model):</td>
<td>$20,000 \times 19,999 = 400$ million</td>
</tr>
<tr>
<td>2nd order (trigram model):</td>
<td>$20,000' \times 19,999 = 8$ trillion</td>
</tr>
<tr>
<td>3th order (four-gram model):</td>
<td>$20,000'' \times 19,999 = 1.6 \times 10^{17}$</td>
</tr>
</tbody>
</table>

Table 6.1 Growth in number of parameters for n-gram models.
N-gram models

- Five-gram model that we thought would be useful, may well not be practical, even if we have a very large corpus.

- One way of reducing the number of parameters is to reduce the value of n.

- Removing the inflectional ending from words
 - Stemming

- And grouping words into semantic classes

- Or …(ref. Ch12, Ch14)
Building n-gram models

- Corpus: Jane Austen’s novel
 - Freely available and not too large

- As our corpus for building models, reserving *Persuasion* for testing
 - *Emma, Mansfield Park, Northanger Abbey, Pride and Prejudice* (傲慢與偏見), and *Sense and Sensibility*

- Preprocessing
 - Remove punctuation leaving white-space
 - Add SGML tags `<s>` and `</s>`

- N=617,091 words, V=14,585 word types
Statistical Estimators

• Find out how to derive a good probability estimate for the target feature, using the following function:

\[P(w_n | w_1, \ldots, w_{n-1}) = \frac{P(w_1, \ldots, w_n)}{P(w_1, \ldots, w_{n-1})} \]

• Can be reduced to having good solutions to simply estimating the unknown probability distribution of \(n \)-grams. (all in one bin, with no classificatory features)
 – bigram: \(h_1a, h_2a, h_3a, h_4b, h_5b \ldots \) reduce to \(a \) and \(b \)
Statistical Estimators

- We assume that the training text consists of \(N \) words.

- We append \(n-1 \) dummy start symbols to the beginning of the text.
 - \(N \) n-gram with a uniform amount of conditioning available for the next word in all cases

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>Number of training instances</td>
</tr>
<tr>
<td>(B)</td>
<td>Number of values in the multinomial target feature distribution</td>
</tr>
<tr>
<td>(V)</td>
<td>Vocabulary size</td>
</tr>
<tr>
<td>(w_{1:n})</td>
<td>An (n)-gram (w_1 \cdots w_n) in the training text</td>
</tr>
<tr>
<td>(C(w_1 \cdots w_n))</td>
<td>Frequency of (n)-gram (w_1 \cdots w_n) in training text</td>
</tr>
<tr>
<td>(r)</td>
<td>Frequency of an (n)-gram</td>
</tr>
<tr>
<td>(f(\cdot))</td>
<td>Frequency estimate of a model</td>
</tr>
<tr>
<td>(N_r)</td>
<td>Number of target feature values seen (r) times in training instances</td>
</tr>
<tr>
<td>(T_r)</td>
<td>Total count of (n)-grams of frequency (r) in further data</td>
</tr>
<tr>
<td>(h)</td>
<td>‘History’ of preceding words</td>
</tr>
</tbody>
</table>

Table 6.2 Notation for the statistical estimation chapter.
Maximum Likelihood Estimation

• MLE estimates from relative frequencies.
 – Predict: *comes across __?__*
 – Using trigram model: 10 instances (*trigrams*)
 – Using relative frequency:

\[
P(as) = 0.8, \quad P(more) = 0.1, \quad P(a) = 0.1, \quad P(x) = 0
\]

\[
P_{MLE}(w_1, \ldots, w_n) = \frac{C(w_1, \ldots, w_n)}{N}
\]

\[
P_{MLE}(w_n|w_1, \ldots, w_{n-1}) = \frac{C(w_1, \ldots, w_n)}{C(w_1, \ldots, w_{n-1})}
\]
Smoothing

• Sparseness
 – Standard N-gram models is that they must be trained from some corpus.
 – Large number of cases of putative ‘zero probability’ n-gram that should really have some non-zero probability.

• Smoothing
 – Reevaluating some zero or low probability in n-gram.
Laplace’s law

• To solve the failure of the MLE, the oldest solution is to employ Laplace’s law (also called add-one):

\[P_{\text{Lap}}(w_1, \ldots, w_n) = \frac{C(w_1, \ldots w_n) + 1}{N + B} \]

• For sparse sets of data over large vocabularies, such as \(n \)-grams, Laplace’s law actually gives far too much of the probability space to unseen events.
Add-One Smoothing

• Take counts before normalize

• **Unigram MLE** : (ordinary)
 \[P(w_x) = \frac{C(w_x)}{\sum_i C(w_i)} = \frac{C(w_x)}{N} \]

• The probability estimate for an \(n \)-gram seen \(r \) times is
 \[P_r(w_i) = \frac{(r + 1)}{(N + B)} \] . (using add-one)

• So, the frequency estimate becomes
 \[f_r(w_i) = N \frac{(r + 1)}{(N + B)} \]
Add-One Smoothing

• The alternative view: discounting
 – Lowing some non-zero counts that will be assigned to zero counts.

\[d_c = 1 - \frac{C^*}{C} \]
Add-One Smoothing

- **Unigram example:**

\[V = \{A, B, C, D, E\} \quad |V| = 5 \]

\[S = \{A, A, A, A, A, B, B, B, C, C\} \quad , \quad N = |S| = 10 \]

5 for 'A', 3 for 'B', 2 for 'C', 0 for 'D', 'E'

\[P(A) = \frac{(5+1)}{10+5} = 0.4 \quad P(C) = \frac{(2+1)}{10+5} = 0.2 \]

\[P(B) = \frac{(3+1)}{10+5} = 0.27 \quad P(D) = P(E) = \frac{(0+1)}{10+5} = 0.067 \]
Add-One Smoothing

- **Bigram MLE:**
 \[
P(w_n|w_{n-1}) = \frac{C[w_{n-1}w_n]}{C[w_{n-1}]}
\]

- **Smoothed:**
 \[
P^*(w_n|w_{n-1}) = \frac{C[w_{n-1}w_n]+1}{C[w_{n-1}]+V}
\]
Add-One Smoothing: Example

For example: Bigram

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>Chinese</th>
<th>food</th>
<th>lunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>8</td>
<td>1087</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>want</td>
<td>3</td>
<td>0</td>
<td>786</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>to</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>860</td>
<td>3</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Chinese</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>120</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>food</td>
<td>19</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lunch</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.4 Bigram counts for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

N (want) = 1215
N (want, want) = 0
N (want, to) = 768
Add-One Smoothing: Example

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>Chinese</th>
<th>food</th>
<th>lunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>.0023</td>
<td>.32</td>
<td>0</td>
<td>.0038</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>want</td>
<td>.0025</td>
<td>0</td>
<td>.65</td>
<td>0</td>
<td>.0049</td>
<td>.0066</td>
<td>.0049</td>
</tr>
<tr>
<td>to</td>
<td>.00092</td>
<td>0</td>
<td>.0031</td>
<td>.26</td>
<td>.00092</td>
<td>.0021</td>
<td>.0037</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>.0021</td>
<td>0</td>
<td>.020</td>
<td>.0021</td>
<td>.055</td>
</tr>
<tr>
<td>Chinese</td>
<td>.0094</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.56</td>
<td>.0047</td>
</tr>
<tr>
<td>food</td>
<td>.013</td>
<td>0</td>
<td>.011</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>.0087</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.0022</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 6.5 Bigram probabilities for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

\[P(\text{want}|\text{want}) = \frac{0}{1215} = 0 \]
\[P(\text{to}|\text{want}) = \frac{786}{1215} = 0.65 \]
Add-One Smoothing: Example

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>Chinese</th>
<th>food</th>
<th>lunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>.0018</td>
<td>.22</td>
<td>.00020</td>
<td>.0028</td>
<td>.00020</td>
<td>.00020</td>
<td>.00020</td>
</tr>
<tr>
<td>want</td>
<td>.0014</td>
<td>.00035</td>
<td>.28</td>
<td>.00035</td>
<td>.0025</td>
<td>.0032</td>
<td>.0025</td>
</tr>
<tr>
<td>to</td>
<td>.00082</td>
<td>.00021</td>
<td>.0023</td>
<td>.18</td>
<td>.00082</td>
<td>.00021</td>
<td>.0027</td>
</tr>
<tr>
<td>eat</td>
<td>.00039</td>
<td>.00039</td>
<td>.0012</td>
<td>.00039</td>
<td>.00078</td>
<td>.0012</td>
<td>.021</td>
</tr>
<tr>
<td>Chinese</td>
<td>.0016</td>
<td>.00055</td>
<td>.00055</td>
<td>.00055</td>
<td>.00055</td>
<td>.066</td>
<td>.0011</td>
</tr>
<tr>
<td>food</td>
<td>.0064</td>
<td>.00032</td>
<td>.0058</td>
<td>.00032</td>
<td>.00032</td>
<td>.00032</td>
<td>.00032</td>
</tr>
<tr>
<td>lunch</td>
<td>.0024</td>
<td>.00048</td>
<td>.00048</td>
<td>.00048</td>
<td>.00048</td>
<td>.00096</td>
<td>.00048</td>
</tr>
</tbody>
</table>

Figure 6.7 Add-one smoothed bigram probabilities for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

\[P'(\text{want}|\text{want}) = (0+1)/(1215+1616) = 0.00035 \]
\[P'(\text{to}|\text{want}) = (786+1)/(1215+1616) = 0.28 \]
Add-One Smoothing

- \(P(\text{want}|\text{want}) \) changes from 0 to 0.00035
- \(P(\text{to}|\text{want}) \) changes from 0.65 to 0.28

- The sharp change occurs because too much probability mass is moved to all the zero.

- Gale and Church summarize add-one smoothing is worse at predicting the actual probability than unsmoothed MLE.
Lidstone’s Law and Jeffreys-Perks Law

- **Lidstone’s Law:**
 - Add some normally smaller positive value \(\lambda \)

\[
P_{Lid}(w_1, \ldots, w_n) = \frac{C(w_1, \ldots, w_n) + \lambda}{N + B\lambda}
\]

- **Jeffreys-Perks Law:**
 - Viewed as linear interpolation between MLE and a uniform prior
 - Also called ‘Expected Likelihood Estimation’

\[
P_{Lid}(w_1, \ldots, w_n) = \mu \frac{C(w_1, \ldots, w_n)}{N} + (1 - \lambda) \frac{1}{B} = \frac{C(w_1, \ldots, w_n) + \lambda}{N + B\lambda}
\]

where: \(\mu = \frac{N}{N + B\lambda} \)
Held out Estimation

• A cardinal sin in Statistical NLP is to test on training data. Why??
 – Overtraining
 – Models memorize the training text

• Test data is independent of the training data.
Held out Estimation

• When starting to work with some data, one should always separate it into a training portion and a testing portion.
 – Separate data immediately into training and test data (5~10%, reliable).
 – Divide training and test data into two again
 – Held out (validation) data (10%)
 • Independent of primary training and test data
 • Involve many fewer parameters
 • Sufficient data for estimating parameters

• Research:
 – Write an algorithm, train it and test it (X)
 • Subtly probing
 – Separate to Development test set, final test set (O)
Held out Estimation

• How to select test/held out data?
 – Randomly or aside large contiguous chunks

• Comparing average scores is not enough
 – Divide the test data into several parts
 – t-test
Held out Estimation : t-test

<table>
<thead>
<tr>
<th></th>
<th>System 1</th>
<th>System 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>71,61,55,60,68,49, 42,72,76,55,64</td>
<td>42,55,75,45,54,51, 55,36,58,55,67</td>
</tr>
<tr>
<td>Total</td>
<td>673</td>
<td>593</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>mean x_i</td>
<td>61.2</td>
<td>53.9</td>
</tr>
<tr>
<td>$s_i^2 = \sum (x_{ij} - \bar{x}_i)^2$</td>
<td>1081.6</td>
<td>1186.9</td>
</tr>
<tr>
<td>df</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Pooled $s^2 = \frac{1081.6 + 1186.9}{10 + 10} \approx 113.4$

$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{2s^2}{n}}} = \frac{61.2 - 53.9}{\sqrt{\frac{2 \times 113.4}{11}}} \approx 1.60$

t=1.60<1.725, the data fail the significance test.
Held out Estimation

• The held out estimator: (for n-grams)

\[C_1(w_1 \cdots w_n) = \text{frequency of } w_1 \cdots w_n \text{ in training data} \]
\[C_2(w_1 \cdots w_n) = \text{frequency of } w_1 \cdots w_n \text{ in held out data} \]
\[T_r = \sum_{\{w_1 \cdots w_n : C_1(w_1 \cdots w_n) = r\}} C_2(w_1 \cdots w_n) \]

\(T_r \) : the total number of times that all \(n \)-grams (that appeared \(r \) times in the training text) appeared in the held out data

• The probability of one of these n-grams:

\[P_{ho}(w_1 \cdots w_n) = \frac{T_r}{N_r N} \]
Cross-validation

• Dividing training data into two parts.
 – First, estimates are built by doing counts on one part.
 – Second, we use the other pool of held out data to refine those estimates.

• Two-way cross-validation
 – delete estimation

\[P_{\text{del}}(w_1, \ldots, w_n) = \frac{\sum_{r} T_{r}^{01} + T_{r}^{10}}{N(N_r^0 + N_r^1)} \]

\[N_r^0 : \text{the number of n-grams occurring r times in the 0}^{th} \text{ part of the training data.} \]
\[T_{r}^{01} : \text{the total occurrences of those bigrams from part 0 in the 1}^{th} \text{ part.} \]
Cross-validation

• Leaving-one-out
 – Training corpus: \(N-1\)
 – Held out data: 1
 – Repeated \(N\) times
Witten-Bell Discounting

• A much better smoothing method that is only slightly more complex than add-one.

• Zero-frequency word or N-gram as one that just hasn’t happened.
 – can be modeled by probability of seeing an n-gram for the first time

• Key: **things seen once**!

• The count of ‘first time’ n-grams is just for the number of n-gram types we saw in data.
Witten-Bell Discounting

• Probability of total unseen (zero) N-grams:

\[
\sum_{i: C_i = 0} p_i^* = \frac{T}{N + T}
\]

– \(T \) is the type we have already seen
– \(T \) differs from \(V \) (\(V \) is total types we might see)

• Divide up to among all the zero N-grams
 – Divided equally

\[
p_i^* = \frac{T}{Z(N + T)}
\]

where \(Z = \sum_{i: C_i = 0} 1 \) (number of n-gram types with zero-counts)
Witten-Bell Discounting

- Discounted probability of the seen n-grams

 $$p_i^* = \frac{c_i}{N + T} \text{ if } c_i > 0$$

 ($c_i : \text{the count of a seen } n\text{-gram } i$)

- Another formulation (in term of frequency count)

 $$c_i^* = \begin{cases}
 \frac{T}{Z} \frac{N}{N + T} , & \text{if } c_i = 0 \\
 c_i \frac{N}{N + T} , & \text{if } c_i > 0
 \end{cases}$$
Witten-Bell Discounting

For example (of unigam modeling)

\[V = \{A, B, C, D, E\} \quad |V| = 5 \]
\[S = \{A, A, A, A, A, B, B, B, C, C\} \quad N = |S| = 10 \]

5 for 'A', 3 for 'B', 2 for 'C', 0 for 'D', 'E',

\[T = |\{A, B, C\}| = 3, \quad Z = 2 \]

\[P(A) = \frac{5}{10 + 3} = 0.385 \]
\[P(C) = \frac{2}{10 + 3} = 0.154 \]
\[P(B) = \frac{3}{10 + 3} = 0.23 \]
\[P(D) = P(E) = \frac{3}{10 + 3} * \frac{1}{2} = 0.116 \]
Witten-Bell Discounting

• Bigram
 – Consider bigrams with the history word w_x.
 • for zero-count bigram (with w_x as the history)

 $$
 \sum_{i:C(w_i,w_x)=0} p^*(w_i|w_x) = \frac{T(w_x)}{C(w_x)+T(w_x)}
 $$

 $$
 p^*(w_i|w_x) = \frac{T(w_x)}{Z(w_x)(C(w_{i-1})+T(w_{i-1}))}
 $$

 – $C(w_x)$: frequency count of word w_x in the corpus
 – $T(w_x)$: types of nonzero-count bigrams (with w_x as the history)
 – $Z(w_x)$: types of zero-count bigrams (with w_x as the history)

 $$
 Z(w_x) = \sum_{i:C(w_i,w_x)=0} 1
 $$
Witten-Bell Discounting

- Bigram
 - For nonzero-count bigram

\[
\sum_{i:C(w_i,w_x)>0} p^*(w_i|w_x) = \frac{C(w_x,w_i)}{C(w_x) + T(w_x)}
\]
Good-Turing estimation

- A method is slightly more complex than Witten-Bell.
 - To re-estimate zero or low counts by higher counts

Good-Turing estimation:

- For any n-gram, that occurs \(r \) times, we pretend it occurs \(r^* \) times:
 \[
 r^* = (r + 1) \frac{n_{r+1}}{n_r}, \quad \text{A new frequency count}
 \]
 \(n_r \): the number of n-grams that occurs exactly \(r \) times in the training data

- The probability estimate for a n-gram
 \[
 P_{GT}(x) = \frac{r^*}{N}
 \]
 \(N \): the size of the training data
Good-Turing estimation

• The size (word counts) of the training data remains the same
 - Let \(\sum_{r=1}^{\infty} r \cdot n_r = N \)

\[
\tilde{N} = \sum_{r=0}^{\infty} r^* \cdot n_r = \sum_{r=0}^{\infty} (r+1) \cdot n_{r+1} = \sum_{r'=1}^{\infty} r' \cdot n_{r'} = N \quad (set \quad r' = r+1)
\]

• Unseen: \(N_1/N \), why?
 \(0^*=(0+1)^*N_1/N_0 \) and number of zero frequency words: \(N_0 \)
 So, the probability = \(((N_1/N_0)^*N_0)/N = N_1/N \) (MLE)
Good-Turing estimation : Example

- Imagine you are fishing. You have caught 10 Carp (鯉魚), 3 Cod (鳕魚), 2 tuna (鰤魚), 1 trout (鰤魚), 1 salmon (鮭魚), 1 eel (鰻魚)
- How likely is it that next species is now?
 - \(P_0 = \frac{n_1}{N} = \frac{3}{18} = \frac{1}{6} \)
- How likely is eel ? 1*
 - \(n_1 = 3, n_2 = 1 \)
 - \(1^* = (1+1) \times 1 = \frac{2}{3} \)
 - \(P(\text{eel}) = \frac{1^*}{N} = (\frac{2}{3})/18 = \frac{1}{27} \)
- How likely is tuna? 2*
 - \(n_2 = 1, n_3 = 1 \)
 - \(2^* = (2+1) \times 1/1 = 3 \)
 - \(P(\text{tuna}) = \frac{2^*}{N} = 3/18 = \frac{1}{6} \)
- But how likely is Cod? 3*
 - Need a smoothing for \(n_4 \) in advance
The problem of Good-Turing estimate is that when \(n_{r+1} = 0 \) and \(P(r^*) > P((r+1)^*) \)
- The choice of \(k \) may be overcome the second problem.
- Experimentally \(4 \leq k \leq 8 \) (Katz), Parameter \(k, N_{k+1} \neq 0 \)

\[
\hat{P}_{GT}(a_k) < \hat{P}_{GT}(a_{k+1}) \quad \Rightarrow \quad (k+1) \cdot n^2_{k+1} - n_k \cdot n_{k+2}(k+2) < 0
\]
Combining Estimators

- Because of the same estimate for all \(n\text{-grams} \) that never appeared, we hope to produce better estimates by looking at \((n-1)\text{-grams} \).

- Combine multiple probability estimates from various different models.
 - Simple linear interpolation
 - Katz Back-Off
 - General linear interpolation
Simple linear interpolation

- Also called mixture model

\[P_{li}(w_n|w_{n-2}, w_{n-1}) = \lambda_1 P_1(w_n) + \lambda_2 P_2(w_n|w_{n-1}) + \lambda_3 P_3(w_n|w_{n-1}, w_{n-2}) \]

where: \(0 \leq \lambda_i \leq 1, \sum \lambda_i = 1 \)

- How to get the weights:
 - Expectation Maximization (EM) algorithm
 - Powell’s algorithm

- The method works quite well. Chen and Goodman use it as baseline model.
General linear interpolation

- The difference between GLI and SLI is that the weights \(\lambda_i \) of the GLI is a function of the history.

\[
P_{il}(w|h) = \sum_{i=1}^{k} \lambda_i(h) P_i(w|h)
\]

where: \(\forall h, \ 0 \leq \lambda_i(h) \leq 1, \) and \(\sum_i \lambda_i(h) = 1 \)

- Can make bad use of component models
 - Ex: unigram estimate is always combined in with the same weight regardless of whether the trigram is good or bad.
Katz Back-off

• Extend the intuition of the GT estimate by adding the combination of higher-order language models with lower-order ones

• Larger counts are not discounted because they are taken to be reliable. \((r>k)\)

• Lower counts are total discounted. \((r<=k)\)
Katz Back-off

- We take the bigram (n-gram, n=2) counts for example:

\[C^*[w_{i-1}w_i] = \begin{cases}
 r & \text{if } r > k \\
 d_r r & \text{if } k \geq r > 0 \\
 \beta(w_{i-1})P_{Katz}(w_i) & \text{if } r = 0
\end{cases} \]

1. \(r = C[w_{i-1}w_i] \)

\[r^* = \frac{(k + 1)n_{k+1}}{r} \]

2. \(d_r = \frac{n_1}{1 - \frac{(k + 1)n_{k+1}}{n_1}} \)

3. \(\beta(w_{i-1}) = \frac{\sum_{w_i} C[w_{i-1},w_i] - \sum_{w_i:C[w_{i-1},w_i]>0} C^*[w_{i-1},w_i]}{\sum_{w_i:C[w_{i-1},w_i]<0} P_{Katz}(w_i)} \)
Katz Back-off

\[
\beta(w_{i-1}) = \frac{\sum_{w_i} C[w_{i-1}, w_i] - \sum_{w_i: C[w_{i-1}, w_i] > 0} C^*[w_{i-1}, w_i]}{\sum_{w_i: C[w_{i-1}, w_i] = 0} P_{\text{katz}}(w_i)}
\]

- count before discount
- count after discount
- Unigram weight
Katz Back-off

- **Derivation of** d_r:
 - Before of the derivation, the d_r have to satisfy two equations:
 \[
 \sum_{r=1}^{k} n_r (1 - r)r = n_1 \quad \text{and} \quad d_r = \mu \frac{r^*}{r}
 \]

1. \[
\sum_{r=1}^{k} r n_r - \sum_{r=1}^{k} r^* n_r = n_1 - (k + 1)n_{r+1}
\]

 \[
 \Rightarrow \sum_{r=1}^{k} (r n_r - r^* n_r) = n_1 - (k + 1)n_{r+1}
 \]

 \[
 \Rightarrow \frac{\sum_{r=1}^{k} (r n_r - r^* n_r)}{n_1 - (k + 1)n_{r+1}} = 1
 \]

 \[
 \Rightarrow \sum_{r=1}^{k} \frac{n_r (r - r^*)}{n_1 - (k + 1)n_{r+1}} = n_1 \quad (1)
 \]

2. \[
\sum_{r=1}^{k} n_r (1 - d_r)r = n_1
\]

 \[
 \Rightarrow \sum_{r=1}^{k} n_r \left(1 - \mu \frac{r^*}{r}\right)r = n_1
 \]

 \[
 \Rightarrow \sum_{r=1}^{k} n_r \left(r - \mu r^*\right) = n_1 \quad (2)
 \]
Katz Back-off

\[
\therefore (1) = (2); \quad \therefore \quad \frac{n_r(r-r^*)n_1}{n_1-(k+1)n_{r+1}} = n_r(r-\mu r^*)
\]

\[
\Rightarrow \frac{(r-r^*)n_1}{r[n_1-(k+1)n_{k+1}]} = 1 - \frac{r^*}{r} = 1 - d_r
\]

\[
\Rightarrow d_r = 1 - \frac{(r-r^*)n_1}{r[n_1-(k+1)n_{k+1}]} = \frac{r[n_1-(k+1)n_{k+1}](r-r^*)n_1}{r[n_1-(k+1)n_{k+1}]}
\]

\[
= \frac{r^* n_1 - r(k+1)n_{k+1}}{r[n_1-(k+1)n_{k+1}]}
\]

\[
\therefore d_r = \frac{r^* - (k+1)n_{k+1}}{n_1} \div \frac{n_1}{1 - \frac{(k+1)n_{k+1}}{n_1}}
\]
Katz Back-off

- Take the conditional probabilities of bigrams (n-gram, n=2)
 For example:

\[
P_{Katz}(w_i|w_{i-1}) = \begin{cases}
\frac{C[w_{i-1}, w_i]}{C[w_{i-1}]} & \text{if } r > k \\
\frac{d_r}{C[w_{i-1}]} & \text{if } k \geq r > 0 \\
\alpha(w_{i-1})P_{Katz}(w_i) & \text{if } r = 0
\end{cases}
\]

1. \(d_r = \frac{r}{1 - \frac{(k+1)n_{k+1}}{n_1}} \)

2. \(\alpha(w_{i-1}) = \frac{1 - \sum_{w_j:C[w_{i-1}, w_j] > 0} P_{Katz}(w_i|w_{i-1})}{\sum_{w_j:C[w_{i-1}, w_j] = 0} P_{Katz}(w_i)} \)
Katz Back-off : Example

- A small vocabulary consists of only five words, i.e., \(V = \{w_1, w_2, \ldots, w_5\} \).
 The frequency counts for word pairs started with \(w_1 \) are:
 \[C[w_1, w_2] = 3, C[w_1, w_3] = 2, C[w_1, w_4] = 1, C[w_1, w_1] = C[w_1, w_5] = 0 \]
 , and the word frequency counts are :
 \[C[w_1] = 6, C[w_2] = 8, C[w_3] = 10, C[w_4] = 6, C[w_5] = 4 \]

Katz back-off smoothing with Good-Turing estimate is used here for word pairs with frequency counts equal to or less than two. Show the conditional probabilities of word bigrams started with \(w_1 \), i.e.,

\[P_{Katz}(w_1|w_1), P_{Katz}(w_2|w_1), \ldots, P_{Katz}(w_5|w_1)? \]
Katz Back-off : Example

\[r^* = (r + 1) \frac{N_{r+1}}{n_r} \], where \(n_r \) is the number of \(n \)-grams that occurs exactly \(r \) times in the training data

\[\therefore P_{\text{Katz}} (w_2|w_1) = P_{\text{ML}} (w_2|w_1) = \frac{3}{6} = \frac{1}{2} \]

\[1^* = (1+1) \cdot \frac{1}{1} = 2 \quad 2^* = (2 + 1) \cdot \frac{1}{1} = 3 \]

\[d_2 = \frac{\frac{3}{1} - (2+1) \cdot 1}{1 - (2+1) \cdot 1} = \frac{3 - 3}{2 - 2} = \frac{3}{4} \quad d_1 = \frac{\frac{2}{1} - (2+1) \cdot 1}{1 - (2+1) \cdot 1} = \frac{2 - 3}{1 - 3} = \frac{1}{2} \]

For \(r = 2 \Rightarrow P_{\text{Katz}} (w_3|w_1) = d_2 \cdot P_{\text{ML}} (w_3|w_1) = \frac{3}{4} \cdot \frac{2}{6} = \frac{1}{4} \]

For \(r = 1 \Rightarrow P_{\text{Katz}} (w_4|w_1) = d_1 \cdot P_{\text{ML}} (w_4|w_1) = \frac{1}{2} \cdot \frac{1}{6} = \frac{1}{12} \]

\[\alpha (w_1) = \frac{\frac{1}{2} - \frac{1}{4} - \frac{1}{12}}{\frac{6}{34} + \frac{4}{34} + \frac{1}{34}} = \frac{34 \cdot 2}{10 \cdot 12} \]

For \(r = 0 \Rightarrow P_{\text{Katz}} (w_5|w_1) = \alpha (w_1) \cdot P_{\text{ML}} (w_5|w_1) = \frac{34}{10} \cdot \frac{2}{12} \cdot \frac{6}{34} = \frac{1}{10} \]

\[P_{\text{Katz}} (w_5|w_1) = \alpha (w_1) \cdot P_{\text{ML}} (w_5|w_1) = \frac{34}{10} \cdot \frac{2}{12} \cdot \frac{4}{34} = \frac{1}{15} \]

And \[P_{\text{Katz}} (w_1|w_1) + P_{\text{Katz}} (w_2|w_1) + \ldots + P_{\text{Katz}} (w_5|w_1) = 1 \]
Kneser-Ney Back-off smoothing

- Absolute discounting

- The lower n-gram (back-off n-gram) is not proportional to the number of occurrences of a word but instead of the number of different words that it follows.
• Take the conditional probabilities of bigrams for example:

\[
P_{KN}(w_i|w_{i-1}) = \begin{cases}
\max\{C[w_{i-1}, w_i] - D, 0\} & \text{if } C[w_{i-1}, w_i] > 0 \\
\frac{C[w_{i-1}]}{\alpha(w_{i-1}) P_{KN}(w_i)} & \text{otherwise}
\end{cases}
\]

1. \(P_{KN}(w_i) = \frac{C[\bullet, w_i]}{\sum_{w_j} C[\bullet, w_j]}\)

2. \(\alpha(w_{i-1}) = \frac{1 - \sum_{w_i : C[w_{i-1}, w_i] > 0} \max\{C[w_{i-1}, w_i] - D, 0\}}{\sum_{w_i : C[w_{i-1}, w_i] = 0} P_{KN}(w_i)}\)
Kneser-Ney Back-off smoothing : Example

- Given a text sequence as the following:
 \textit{SABCAABBCS} (S is the sequence’s start/end marks)

Show the corresponding unigram conditional probabilities:

\[
\begin{align*}
C[\bullet A] &= 3 & C[\bullet B] &= 2 \\
C[\bullet C] &= 1 & C[\bullet S] &= 1 \\
\Rightarrow P_{KN}(A) &= \frac{3}{7} & P_{KN}(B) &= \frac{2}{7} \\
P_{KN}(C) &= \frac{1}{7} & P_{KN}(S) &= \frac{1}{7}
\end{align*}
\]
Evaluation

- Cross entropy:
 \[H(X, q) = H(X) + D(p \parallel q) = -\sum_x p(x) \log q(x) \]

- Perplexity = \[2^{Entropy}\]

- A LM that assigned probability to 100 words would have perplexity 100

\[Entropy = -\sum_{i=1}^{100} \frac{1}{100} \log_2 \frac{1}{100} = \sum_{i=1}^{100} \frac{1}{100} \log_2 100 = \log_2 100 \]

\[perplexity = 2^{\log_2 100} = 100 \]
Evaluation

• In general, the perplexity of a LM is equal to the geometric average of the inverse probability of the words measured on test data:

\[
\sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1...w_{i-1})}}
\]
Evaluation

\[\text{perplexity} = 2^{\text{Entropy}} = 2^{- \sum_{i=1}^{N} \frac{1}{N} \log_2 P(w_i | w_1 \ldots w_{i-1})} \]

\[= \frac{1}{\prod_{i=1}^{N} 2^{\frac{1}{N} \log_2 P(w_i | w_1 \ldots w_{i-1})}} \]

\[= \frac{1}{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 \ldots w_{i-1})^\frac{1}{N}}} \]

\[= \prod_{i=1}^{N} \frac{1}{P(w_i | w_1 \ldots w_{i-1})^\frac{1}{N}} \]

\[= \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 \ldots w_{i-1})}} \]

\[P(w_1n) = p(w_1)p(w_2) \ldots p(w_n) \]

\[\log P(w_1n) = \sum p(w_i) \]
Evaluation

- “true” model for any data source will have the lowest possible perplexity
- The lower the perplexity of our model, the closer it is, in some sense, to the true model
- Entropy, which is simply \log_2 of perplexity
- Entropy is the average number of bits per word that would be necessary to encode the test data using an optimal coder
Evaluation

<table>
<thead>
<tr>
<th>entropy</th>
<th>.01</th>
<th>.1</th>
<th>.16</th>
<th>.2</th>
<th>.3</th>
<th>.4</th>
<th>.5</th>
<th>.75</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>perplexity</td>
<td>0.69%</td>
<td>6.7%</td>
<td>10%</td>
<td>13%</td>
<td>19%</td>
<td>24%</td>
<td>29%</td>
<td>41%</td>
<td>50%</td>
</tr>
</tbody>
</table>

- entropy: 5 → 4
 perplexity: 32 → 16 50%
- entropy: 5 → 4.5
 perplexity: 32 → 16\sqrt{2} 29.3%
Conclusions

• A number of smoothing method are available which often offer similar and good performance.

• More powerful combining methods?