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Statistical Language Models (1/2)

• A probabilistic mechanism for “generating” a piece of text
– Define a distribution over all possible word sequences

– Used LM to quantify the acceptability of a given word sequence 

• What is LM Used for ?
– Speech recognition
– Spelling correction
– Handwriting recognition
– Optical character recognition
– Machine translation
– Document classification and routing
– Information retrieval …

LwwwW 21 

  ?WP



IR – Berlin Chen 4

Statistical Language Models (2/2)

• (Statistical) language models (LM) have been widely 
used for speech recognition and language (machine) 
translation for more than thirty years

• However, their use for information retrieval started only 
in 1998 [Ponte and Croft, SIGIR 1998]
– Basically, a query is considered generated from an “ideal” 

document that satisfies the information need
– The system’s job is then to estimate the likelihood of each 

document in the collection being the ideal document and rank 
then accordingly (in decreasing order)

Ponte and Croft. A language modeling approach to information retrieval. SIGIR 1998



Three Ways of Developing LM Approaches for IR 
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(a) Query likelihood
(b) Document likelihood
(c) Model comparison

literal term matching 
or concept matching
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Query-Likelihood Language Models

• Criterion: Documents are ranked based on Bayes 
(decision) rule

– is the same for all documents, and can be ignored 

– might have to do with authority, length, genre, etc.
• There is no general way to estimate it
• Can be treated as uniform across all documents

• Documents can therefore be ranked based on

– The user has a prototype (ideal) document in mind, and 
generates a query based on words that appear in this document

– A document         is treated as a model          to predict (generate) 
the query
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Another Criterion: Maximum Mutual Information

• Documents can be ranked based their mutual information 
with the query (in decreasing order)

• Document ranking by mutual information (MI) is equivalent 
that by likelihood

   
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Yet Another Criterion: Minimum KL Divergence

• Documents are ranked by Kullback-Leibler (KL) 
divergence (in increasing order)
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Schematic Depiction for Query-Likelihood Approach
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Building Document Models: n-grams

• Multiplication (Chain) rule

– Decompose the probability of a sequence of events into the 
probability of each successive events conditioned on earlier events

• n-gram assumption
– Unigram

• Each word occurs independently of the other words
• The so-called “bag-of-words” model (e.g., how to distinguish 

“street market” from “market street)
– Bigram

– Most language-modeling work in IR has used unigram models
• IR does not directly depend on the structure of sentences

         12121312121  LLL wwwwPwwwPwwPwPw....wwP   

         LL wPwPwPwPw....wwP 32121   

         12312121  LLL wwPwwPwwPwPw....wwP   
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Unigram Model (1/4)

• The likelihood of a query                        given a 
document

– Words are conditionally independent of each other given 
the document

– How to estimate the probability of a (query) word given the 
document                     ?

• Assume that words follow a multinomial distribution
given the document
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Unigram Model (2/4)

• Use each document itself a sample for estimating its 
corresponding unigram (multinomial) model
– If Maximum Likelihood Estimation (MLE) is adopted
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The zero-probability problem
If we and wf do not occur in D
then P(we |MD)= P(wf |MD)=0

This will cause a problem in predicting 
the query likelihood (See the equation for 
the query likelihood in the preceding slide)
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Unigram Model (3/4)

• Smooth the document-specific unigram model with a 
collection model (two states, or a mixture of two multinomials)

• The role of the collection unigram model
– Help to solve zero-probability problem
– Help to differentiate the contributions of different missing terms in 

a document (global information like IDF ? )  

• The collection unigram model can be estimated in a 
similar way as what we do for the document-specific 
unigram model 
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Unigram Model (4/4)

• An evaluation on the Topic Detection and Tracking (TDT) 
corpora
– Language Model

– Vector Space Model 

mAP Unigram Unigram+Bigram 

TQ/TD 0.6327 0.5427  

TDT2 TQ/SD 0.5658 0.4803 

TQ/TD 0.6569 0.6141  

TDT3 TQ/SD 0.6308 0.5808 

mAP Unigram Unigram+Bigram

TQ/TD 0.5548 0.5623  

TDT2 TQ/SD 0.5122 0.5225 

TQ/TD 0.6505 0.6531  

TDT3 TQ/SD 0.6216 0.6233 
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• Consideration of contextual information 
(Higher-order language models, e.g., bigrams)
will not always lead to improved performance
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Statistical Translation Model (1/2)

• A query     is viewed as a translation or distillation from a 
document
– That is, the similarity measure is computed by estimating the 

probability that the query would have been generated as a 
translation of that document

• Assumption of context-independence (the ability to handle 
the ambiguity of word senses is limited)

• However, it has the capability of handling the issues of 
synonymy (multiple terms having similar meaning) and 
polysemy (the same term having multiple meanings)

               
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Berger & Lafferty (1999)

A. Berger and J. Lafferty. Information retrieval as statistical translation. SIGIR 1999 
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Statistical Translation Model (2/2)

• Weakness of the statistical translation model
– The need of a large collection of training data for estimating 

translation probabilities, and inefficiency for ranking documents

• Jin et al. (2002) proposed a “Title Language Model” 
approach to capture the intrinsic document to query 
translation patterns
– Queries are more like titles than documents (queries and titles 

both tend to be very short and concise descriptions of 
information, and created through a similar generation process)

– Train the statistical translation model based on the document-
title pairs in the whole collection

R. Jin et al. Title language model for information retrieval. SIGIR 2002 
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Probabilistic Latent Semantic Analysis (PLSA)

• Also called The Aspect Model, Probabilistic Latent 
Semantic Indexing (PLSI)
– Graphical Model Representation (a kind of Bayesian Networks)

T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 2001

Hofmann (1999)
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PLSA: Formulation

• Definition
– : the prob. when selecting a doc

– : the prob. when pick a latent class         for the doc   

– : the prob. when generating a word        from the class

 DP D

D DTP k kT

 kTwP kTw
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PLSA: Assumptions

• Bag-of-words: treat docs as memoryless source, words 
are generated independently

• Conditional independent: the doc      and word       are 
independent conditioned on the state of the associated 
latent variable  
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PLSA: Training (1/2)

• Probabilities are estimated by maximizing the collection 
likelihood using the Expectation-Maximization (EM) 
algorithm
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EM tutorial:
- Jeff A. Bilmes  "A Gentle Tutorial of the EM Algorithm and its Application 

to Parameter Estimation for Gaussian Mixture and Hidden Markov Models," U.C. Berkeley TR-97-021
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PLSA: Training (2/2)

• E (expectation) step

• M (Maximization) step
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PLSA: Latent Probability Space (1/2)

image sequence
analysis 

medical imaging
context of contour
boundary detection

phonetic 
segmentation

       

     kik
T

kj

ik
T

ikj
T

ikjij

TDPTPTwP

DTPDTwPDTwPDwP

k

kk








               

,,,,,

  
kjkj TwP

,
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PLSA: Latent Probability Space (2/2)
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PLSA: One more example on TDT1 dataset

aviation space missions family love Hollywood love
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PLSA: Experiment Results (1/4)

• Experimental Results 
– Two ways to smoothen empirical distribution with PLSA

• Combine the cosine score with that of the vector space 
model (so does LSA)
PLSA-U* (See next slide)

• Combine the multinomials individually 
PLSA-Q*

Both provide almost identical performance
– It’s not known if PLSA  (                    ) was used alone
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PLSA: Experiment Results (2/4)

PLSA-U*
• Use the low-dimensional representation                and  

(be viewed in a k-dimensional latent space) to evaluate 
relevance by means of cosine measure

• Combine the cosine score with that of the vector space 
model

• Use the ad hoc approach to re-weight the different model 
components (dimensions) by
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PLSA: Experiment Results (3/4)

• Why                                             ?

– Reminder that in LSA,  the relations between any two docs can 
be formulated as 

– PLSA mimics LSA in similarity measure
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PLSA: Experiment Results (4/4)
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PLSA vs. LSA

• Decomposition/Approximation
– LSA: least-squares criterion measured on the L2- or Frobenius 

norms of the word-doc matrices
– PLSA: maximization of the likelihoods functions based on the 

cross entropy or Kullback-Leibler divergence between the 
empirical distribution and the model

• Computational complexity
– LSA: SVD decomposition
– PLSA: EM training, is time-consuming for iterations ?

– The model complexity of Both LSA and PLSA grows linearly with 
the number of training documents

• There is no general way to estimate or predict the vector 
representation (of LSA) or the model parameters (of PLSA) 
for a newly observed document
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Latent Dirichlet Allocation (LDA) (1/2)

• The basic generative process of LDA closely resembles 
PLSA; however,
– In PLSA, the topic mixture             is conditioned on each 

document (            is fixed, unknown)
– While in LDA, the topic mixture               is drawn from a Dirichlet 

distribution, so-called the conjugate prior, (               is unknown 
and follows a probability distribution)

Blei et al. (2003)
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Latent Dirichlet Allocation (2/2)

word 2

word 3

word 1

X (P(w1))
Y (P(w2))

Z (P(w3))

X+Y+Z=1
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Word Topic Models (WTM)

• Each word of language are treated as a word topical 
mixture model for predicting the occurrences of other 
words

• WTM also can be viewed as a nonnegative factorization 
of a “word-word” matrix consisting probability entries 
– Each column encodes the vicinity information of all occurrences of 

a distinct word 
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Comparison of WTM and PLSA/LDA 

• A schematic comparison for the matrix factorizations of 
PLSA/LDA and WTM
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WTM: Information Retrieval (1/2)

• The relevance measure between a query and a 
document can be expressed by

• Unsupervised training
– The WTM of each word can be trained by concatenating those 

words occurring within a context window of size around each 
occurrence of the word, which are postulated to be relevant to 
the word
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WTM: Information Retrieval (2/2)

• Supervised training: The model parameters are trained 
using a training set of query exemplars and the 
associated query-document relevance information
– Maximize the log-likelihood of the training set of query 

exemplars generated by their relevant documents
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Applying Relevance Feedback to LM Framework (1/2)

• There is still no formal mechanism to incorporate 
relevance feedback (judgments) into the language 
modeling framework
– The query is a fixed sample while focusing on estimating 

accurate estimation of document language models

• Ponte (1998) proposed a limited way to incorporate blind 
reference feedback into the LM framework 
– Think of example relevant documents            as examples of 

what the query might have been, and re-sample (or expand) the 
query by adding k highly descriptive words from the these 
documents (blind reference feedback)

 DwP

RD ~

 
 

RD C

D

w wP
wP

w
~

*
M
M

logmaxarg

J. M. Ponte,   A language modeling approach to information retrieval, Ph.D. dissertation, UMass, 1998 
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Applying Relevance Feedback to LM Framework (2/2)

• Miller et al. (1999) propose two relevance feedback 
approach 
– Query expansion: add those words to the initial query that 

appear in two or more of the top m retrieved documents
– Document model re-estimation: use a set of outside training 

query exemplars to train the transition probabilities of the 
document models

• Where                     is the set of training query exemplars,       
is the set of docs that are relevant to a specific training query 

exemplar      ,        is the length of the query , and                       is the total number 
of docs relevant to the query

 DiwP M

 CiwP M

A document model

Query

Lw....wwQ 21 

 
       

 
 
 

   













  

Q

Q QR n

TrainSetQ
QR

TrainSetQ DocD Qq CnDn

Dn

DocQ
qPλqPλ

qPλ

λ
  to

  to MM
M

   
1ˆ

the old weight

the new weight 819 queries ≦2265 docs

          
L
i CiDiD wPλwPλQP 1 1 MMM 

 QTrainSet
  QRDoc   to

Q Q   QRDoc   to
Q

Miller et al. , A hidden Markov model information retrieval system, SIGIR 1999



IR – Berlin Chen 38

Incorporating Prior Knowledge into LM Framework

• Several efforts have been paid to using prior knowledge 
for the LM framework, especially modeling the document 
prior
– Document length
– Document source
– Average word-length 
– Aging (time information/period)
– URL
– Page links
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Implementation Notes: Probability Manipulation 

• For language modeling approaches to IR, many conditional 
probabilities are usually multiplied. This can result in a 
“floating point underflow”

• It is better to perform the computation by “adding” 
logarithms of probabilities instead
– The logarithm function is monotonic (order-preserving) 

• We also should avoid the problem of “zero probabilities (or 
estimates)” owing to sparse data, by using appropriate 
probability smoothing techniques
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Implementation Notes: Converting to tf-idf-like Weighting

• The query likelihood retrieval model
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Therefore, the similarity score is directly proportional 
to the document frequency and inversely proportional 
to the collection frequency.
=> Can be efficiently implemented with inverted files
(To be discussed later on!)

Logarithm is a monotonic 
(rank-preserving) transformation


