4.7
Row Space, Column Space,
and Null Space




Row Space and Column Space

Definition

¢ If Als anm? n matrix, then the subspacefspanned by
the row vectors oA is called theow spaceg ) of A,
and the subspace Bf' spanned by the column vectass
called thecolumn spacé ) of A.

¢ Thesolution spacef the homogeneous system of equation
Ax = 0, which isa subspace dR", is called thenull spacq
) of A.




Remarks

In this section we will be concerned with two
guestions

¢ What relationships exist between the solutions of a linear
systemAx=b and the row space, column space, and null
space ofA.

¢ What relationships exist among the row space, column
space, and null space of a matrix.



‘ Remarks

A It follows from Formula(10) of Section 1.3

ai; aip -+ Aaip X1

as1 Q22 --° A9 X9
A= | 7 . = |
_aml Am2 - amn_ _an_

Ax = 11 + x99+ - -+ x,,, = b

A We conclude thatx=Db is consistent if and only if b Is
expressible as a linear combination of the column
vectors ofA or, equivalently, if and only if b is in the
column space ofA.




Theorem 4.7.1

Theorem 4.7.1

¢ A system of linear equatiods = b Is consistent If
and only ifb is in the column space &



Example

e—13 2@(1e dgl

Let Ax = b be the linear system&1 2 -3 kS =Yg

82 1 -2 pg @3
Show thab is in the column space & and expresk as a linear
combination of the column vectors Af

Solution:

¢ Solving the system by Gaussian elimination yields
=2,%=-1,%=3

¢ Since the system is consistdnis in the column space &

¢ Moreover, itfollowsthat &1 g 3¢ g2 e 1¢

E. U ab ol o 6 o
261 § 2548 3 ¢ =9

€2 B 16 &2 € 3



General and Particular Solutions

Theorem 4.7.2

¢ If X, denotes any single solution of a consistent linear
systemAx = b, and ifv,,v,, @ form a basis for the null
space ofA, (that is, the solution space of the homogeneous
systemAx = 0), then every solution d&x = b can be
expressed in the form

Conversely, for all choices of scalaxsc,, ¢,,the
vectorx in this formula is a solution gfx = b.




Proof of Theorem 4.7.2

Assume thax, Is any fixed solution ofAx=b and thaix is
an arbitrary solution. Thefx, = b andAx = Db.

Subtracting these equations yields

AXT AXg=0 or A(X-Xy)=0
Which shows thak-x, Is a solution of the homogeneous
systemAx = 0.

Sincev,,Vv,, @&.s a basis for the solution space of this
system, we can express<, as a linear combination of
these vectors, sa§x, = c,v;+C,V,+ € €V,. Thus,
X=Xy+CV{+C,V,+ € €.V,



Proof of Theorem 4.7.2

Conversely, for all choices of the scalesg,, éc,, we
have

AX = A(XgtC VeVt € €V,)
AX = AXy + Cy(Avy) +C(Avy)  +  CRAVYF
But X, Is a solution of the nonhomogeneous system, and
vV, V,, @ are solutions of the homogeneous system, st

the last equation implies that
AxX=b+0+0+ €é0=tb
Which shows that is a solution oAx = b.



Remark

Remark

¢

The vectoix, is called goarticular solutior( ) of AX =
b.

The expressior,+ c,v,+ --- +c\V,Is called thegeneral
solution( ) of AX =D, the expression,v, + --- + CV,
Is called thegyeneral solutioof Ax = 0.

The general solution &x = b is the sum of any particular
solution ofAx = b and the general solution 8k = 0.
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Example (General Solutionft = b)

The solution to the
nonhomogeneous system

Xp + 3X, T 2Xg

+ 2Xg =0

22X+ 60X, T DX T 2%, + 4X; T 3X; =-1

2X; + 5X,

IS

5x

o+ 10k,  +15%=5

+ 8%, + 4%+ 18X; = 6

X, =-3r-4s-2t, X, =,

Xg = -2S, X, =S,

Xs—t X =

The result can be written in vector

form as
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which is the general solution.

The vectorx, is aparticular
solution of nonhomogeneous
system, and the linear
combinationx is thegeneral

solutionof the homogeneous
system.
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Elementary Row Operation

Performing an elementary row operation on an
augmented matrix does not change the solution set of th
corresponding linear system.

It follows that applying an elementary row operation to a
matrix A does not change the solution set of the
corresponding linear systeAx=0, or stated another way,
It does not change the null spacedof

Thesolution spacef the homogeneous system of equafan= 0, which isa
subspace dR", is called thenull spaceof A.
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Example

e2 2 -1 0 1
é
: : -1 4 2 3 1
Find a basis for the nullspace gf=¢
el 1 -2 0 -1
80 0 1 1 1
Solution
¢ The nullspace of\is the solution space of the homogeneous system
2X + 2% 1T X3 +X5=0
Xy T X 12X 13X +X%X =0
Xp +X, 12X I X =0

X3 + X4+ X5 =0
¢ In Example 10 of Section 4.5 we showed that the vectors

el g )
e u e
el | Og
v;=€e0 uandv, =-F
e u e
60 g Og
g0 18

form a basis for the nullspace.
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Theorems 4.7.3 and 4.7.4

Theorem 4.7.3

¢ Elementary row operations do not changenihkéspaceof a
matrix.

Theorem 4.7.4

¢ Elementary row operations do not changertve spacef a
matrix.

14



Proof of Theorem 4.7 .4

Suppose that the row vectors of a makiarer ,,r,, er,,
and letB be obtained from by performing an
elementary row operation. (We say tAadndB are row
equivalent.)

We shall show that every vector in the row spads isf
also in that oA, and that every vector in the row space of
A s in that ofB.

If the row operation is a row interchange, tiizeandA
have the same row vectors and consequently have the
same row space.

15



Proof of Theorem 4.7 .4

If the row operation is multiplication of a row by a
nonzero scalar or a multiple of one row to another, then
the row vector,0r,0 , ©B.Q Bafe linear combination
ofr,r, ér,; thus they lie in the row space Af

Since a vector space Is closed under addition and scalar
multiplication, all linear combination of0r,0 , €Q Wi
also lie in the row space & Therefore, each vector In

the row space d is in the row space @&.
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Proof of Theorem 4.7 .4

SinceB is obtained fronA by performing a row
operation A can be obtained frof by performing the
Inverse operation (Sec. 1.5).

Thus the argument above shows that the row spagesof
contained in the row space Bf

17



Remarks

Do elementary row operations change the column space
¢ Yes!

The second column is a scalar multiple of the first, so the
column space oA consists of all scalar multiplies of the

first column vector.

A:FS

20 0 0

13
Add -2 times the first
row to the second

Again, the second column is a scalar multiple of the first,
so the column space Bfconsists of all scalar multiples

of the first column vector. This is not the same as the
column space oA.

18



Theorem 4.7.5

Theorem 4.7.5

¢ If a matrixRis in row echelon form, then the row
vectors with the | eadi:Hr
vectors) form a basis for the row spacdrpand
the column vectors witd.l
vectors form a basis for the column spac®.of

19



Bases for Row and Column Spaces

The matrix
el -2 5 0 3g
s u
R:go 1 3 0 0¢
&0 O O 1 OoOu
& u

O 0 O O 0y

IS in row-echelon form. From Theorem & %he vector
r=[1-250 3]
r,=[01300]
r,= [0001O0]

form abasis for the row space of R, and teetors

el o -2 g 0O e g

U é U é u
clzgou,c:2 - te , O ¢ g
e u Oe u 1 e u

é. u é u é u
&0 G a O é ¢

form a basis for the column space of R.
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Example

Find bases for the row and column spaces of
éll -3 4 -2 5 4
g2 -6 9 1 8 2
é2 -6 9 1 7
Solution: €1 3 4 2 4-

¢ Since elementary row operations do not change the row space of a
matrix, we can find a basis for the row spacd ol finding a basis that
of any rowechelon form of A.

¢ ReducingA to rowechelon form we obtain

9
5

&l -3 4 2 5 4

% 0 1 3 -2 -6
R=€

€ 0 0 0 1 5

© 0 0 0 0 O

21



Example ¢1 -3 4 2 5 4 & -3 4 2 5 4
4 ,

A:éz 6 9 -1 8 2 Rzgo 0 1 3 -2 -6

€2 -6 9 -1 9 7 € 0 0 0 1 5

&1 3 4 2 5 4 © 0 0 0 0 O

The basis vectors for the row spacdRandA
r,=[1-34-254]
r,=[00132-6]
r,=[000015]
Keeping in mind thaf andR may have different column
spaces, we cannot find a basis for the column spa&e of
directly from the column vectors &
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Theorem 4.7.6

Theorem 4.7.6

¢ If AandB are row equivalent matrices, then:

A given set of column vectors @fis linearly
independent if and only if the corresponding column
vectors ofB are linearly independent.

A given set of column vectors éfforms a basis for the
column space oA if and only if the corresponding

column vectors oB form a basis for the column space of
B.

23



Example

-3 2 5 4
0 3 -2 -6
0 O 1 5
O O

o O+ b~

0

We can find the basis for the column spack,dhenthe
corresponding column vectoo$ A will form a basis for the

column space oA.

BasisforRO s ¢
-
c| = 8 s
_0_
BasisforAO s ¢
el o 4e
e e
clzé2 ,30 - %
é2 u”° 9
&1

o |

O O o

o |

umn

umn

8
9
<

space

space
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Example (Basis for a Vector Space
Using Row Operations )

Find a basis for the space spanned by the row vectors
v1 (1,-2, 0, 0, 3)v, = (2,-5,-3,-2, 6),
= (0, 5, 15, 10, O\, = (2, 6, 18, 8, 6).

Except for a varlatlon In notation, the space spanned by these
vectors is the row space of the matrix

&l -2 0 0 3 & -2 0 0 3
22-5-326 0 1 320
@ 5 15 10 0 :@0110
£ 6 18 8 6 © 0 000

¢ Thenonzero row vectons this matrix are
w,=(1,-2,0,0, 3)w,=(0, 1, 3, 2,0)w;= (0,0, 1, 1, 0)

¢ These vectors form a basis for tiogv spaceand consequently form a
basis for the subspace Rf spanned by, v,, V5, andv,.

25



Remarks

Keeping in mind thaf andR may have different column spaces
cannot find a basis for the column spac@ directly from the
column vectors oR.

However,if we can find a set of column vectors®that forms a
basis for the column spaceRfthen thecorrespondingolumn
vectors ofA will form a basis for the column space/Af

The basis vectors obtained for the column space Afconsisted
of column vectors ofA, but the basis vectors obtained for the
row space ofA were not all vectors ofA.

Transpose of the matrix can be used to solve this problem

26



Example (Basis for the Row Space of a
Matrix )

Find a basis for the row space of ¢ The column space & are
& -2 0 0 3 \
& -5 3 26 S8 %%
A=€ 7 7 c2u B & 6
6,0 5 15 10 O C, = éo ,[;]CZ = - @i , a[:]dc4 =18
&2 6 18 8 6 o ¥ .2 Y 8
consisting entirely of row vectors 83 H 68 H 6
from A.

¢ Thus, the basis vectors for the row
space ofA are

Solution:

21 2 0 2 g 20 2 1=[1-2003]

é ' r,=[2-5-3-2 6]

c2 5 5 6 0 15 -10 61886
A'=€0 -3 15 18 mm) € 0 0 1 Eall ]

€0 -2 10 8 000 O

€3 6 0 6 0 0 0 O
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Example (Basis and Linear Combination

(a) Find a subset of the vectars= (1, ) =(2,-5,-3, 6),v3
=(0,1, 3,0)v,=(2,-1, 4,-7),V:= (5 8 1 2) that forms a basis

for the space spanned by these vectors.

(b) Express each vector not in the basis as a linear combination of
the basis vectors.

Solution (a):
el 2 0 2 5g¢g & 0 2 0 1g
é u U
€2 -5 1 -1 -8 = 2‘01-101(J
€0 -3 3 4 1u @© 0 0 1 1
e u S u
83 6 0 -7 2y & 0 0 0 0
V, V, V, V, Vg W, W, W, W, W,

¢ Thus, {v,, v,, v,} is a basis for the column space of the matrix.
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Example

Solution (b):

¢ We can express, as a linear combination of, andw,, express
w; as a linear combination of,, w,, andw, (Why?). By
Inspection, these linear combination are

W3=2W; T W,
We =W, +W,+ W,
¢ We call these theependency equationEhe corresponding
relationships in the original vectors are
Va= 2V 1 V,
Ve=V,;+V,+V,

29



4.8
Rank, Nullity, and the
Fundamental Matrix Spaces




Dimension and Rank

Theorem 4.8.1

¢ If Ais any matrix, themhe row space and column spacé\of
have the same dimension

Proof: LetR be any rowechelon form of. It follows from
Theorem 4.7.4 and 4.7.6b that

dim(row space of) = dim(row space oR).
dim(column space ok) = dim(column space dR)

The dimension of the row spaceRis the number of nonzero
rows = number of | eading 10
space oR

31



Rank and Nullity

Definition
¢ The common dimension of the row and column space of a matri:
Ais called theank( ) of Aand is denoted byank(A); the

dimension of the nullspace of a is called miodity ( )
of A and is denoted byullity(A).

32



Example (Rank and Nullity)

Find the rank and nullity of the matrix

&1 2 0 4 5 -3

€3 -7 2 0 1 4
A=é

é2 -5 2 4 6 1

4 -9 2 4 4 7

Solution:

¢ The reduced rovechelon form oA is
el 0 -4 -28 37 13
9 1 -2 12 16 5

e

€00 0 0 O

© 00 0 0 O

c Si nce there are two nNnonzero  O0W:¢
column space are both tvadmensional, so rankj = 2.
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Example (Rank and Nullity)

¢ To find the nullity ofA, we must find the dimension of the
solution space of the linear systéwx=0.

¢ The corresponding system of equations will be
X T 4X31 28%,1T 37X+ 1X;=0
X T 2X31T 12%,T 16X+ 5X;=0
¢ It follows that the general solution of the system is
=4r + 28+ 37T 13u, %= 2r + 125+ 1a 7 5u,

Xg= T, X, =S, Xs =1, Xs= U

O oo 4o 22 o087 ¢
e, Uu u u e
& 2a 1% 16 g
éx, U é1 u 0é qu
¢ Erée us e t+u
e u &’ 6 o0 e
& U @u o¢ u1 €
€ u é u ¢é u_ é
& 0 g O po e

- 43

5

Q Thus, nullity@) = 4.
K
0
u
i
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Example

What is the maximum possible rank of anx » mattixat
IS not square?

Solution: The row space &fis at mosnh-dimensional and the
column space is at mastdimensional. Since the rank of A is
the common dimension of its row and column space, it follow:
that the rank is at most the smallemoandn.

rank(A) < min(m,n)

35



Theorem 4.8.2

Theorem 4.8.ZDimension Theorem for Matrices)
¢ If Ais a matrix withn columns, themank(A) + nullity(A) = n.

Proof:
SinceA hasn columns Ax = 0 hasn unknowns. These

fall into two categories: the leading variables and the free

variables. number of | N [ number of | .
leading variables| = |free variables N

The number of | eadi-ethlgelonl 0 s
form of A is the rank oA

k() +

number of |
free variables| ~

36



Theorem 4.8.2

The number of free variables is equal to the nullitA.of
This Is so because the nullity Afis the dimension of the
solution space oAx=0, which is the same as the number
of parameters in the general solution, which is the same
as the number of free variables. Thus

rank(@) + nullity(A) =n

37



Example

&1 2 0 4 5 -3
€3 -7 2 0 1 4
A=€
é2 -5 2 4 6 1
4 -9 2 4 4 7

This matrix has 6 columns, so rafAk@ nullity(A) = 6

In previous example, we know ramj(= 4 and nullityA)
=2
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Theorem 4.8.3

Theorem 4.8.3

¢ If Ais anm®n matrix, then:
rank(@) = Number of leading variables in the solutiorAaf= 0.
nullity(A) = Number of parameters in the general solutiodof 0.

39



Example

Find the number of parameters in the general solution of
Ax=0If Ais a 87 matrix of rank 3.

Solution:
¢ nullity(A) =ni rank@) =71 3=4
¢ Thus, there are four parameters.
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‘Theorem 4.8.4 (Equivalent
Statements)

A If Ais ann® nmatrix, and ifT,: R"- R"is multiplication byA, then the following are
equivalent:

Ais invertible.

Ax = 0 has only the trivial solution.

The reduced rovechelon form ofAis I,

Ais expressible as a product of elementary matrices.
Ax = b is consistent for eveny® 1 matrixb.

Ax = b has exactly one solution for every/1 matrix b.
det@®) I O .

The column vectors & are linearly independent.
The row vectors of are linearly independent.

The column vectors &k spanR".

The row vectors oA spanR".

The column vectors ¢k form a basis foR".

The row vectors of form a basis foR".

A has rankn.

A has nullity 0.

O 0 0 0 0 0 0 0 00 00000
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Overdetermined System

A linear system with more equations than unknowns is called
anoverdetermined linear system ( ). With

fewer unknowns than equati o
underdetermined system.

Theorem 4.8.5

¢ If Ax=Db s a consistent linear systemmfequations im unknowns,

and if A has rank, then the general solution of the system contains
parameters.

If Ais ab x 7 matrix with rank 4, andAk=Db is a consistent

linear system, then the general solution of the system contain
/-4=3 parameters.

42



Theorem 4.8.6

Let Abe anm xn matrix

(a) (Overdetemined Case)nt> n, then the linear system
Ax=Db Is iInconsistent for at least one vedban R".

(b) (Underdetermined Case)nf< n, then for each vectdrin
R™the linear systemx=Db is either inconsistent or has
Infinitely many solutions.

43



Proof of Theorem 4.8.6 (a)

Assume thaim>n, in which case the column vectorsfof
cannot spaiR™ (fewer vectors than the dimensionR5f).
Thus, there is at least one vedban R™that is not in the

column space oA, and for thab the systenAx=Db is
iInconsistent by Theorem 4.7.1.
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Proof of Theorem 4.8.6 (b)

Assume thaim<n. For each vectdr in R" there are two

possibilities: either the systeAx=Db is consistent or it is
Inconsistent.

If it IS Inconsistent, then the proof is complete.

If it Is consistent, then Theorem 4.8.5 implies that the
general solution hasr parameters, whererank(@).

But rank@) is the smaller o andn, son-r =n-m> 0

This means that the general solution has at least one
parameter and hence there are infinitely many solutions.
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Example

What can you say about the solutions of an overdetermined
systemAx=Db of 7 equations in 5 unknowns in whighas

rank = 47

What can you say about the solutions of an underdetermined
systemAx=Db of 5 equations in 7 unknowns in whighas

rank = 47

Solution:

¢ (@) the system is consistent for some vebtor R?, and for any such
the number of parameters in the general solutiorrsb-4=1

¢ (b) the system may be consistent or inconsistent, but if it is consistent
for the vectob in R®, then the general solution has=7-4=3
parameters.
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Example

XX

IS overdetermined, so it cannot be consistent for all
possible values di,, b,, by, b,, andb.. Exact conditions
under which the system is consistent can be obtained by
solving the linear system by Gaussdan elimination.

X, - b

b,- b
b,- 3, +2
b,- 4o, X
b, - 30, +g

N

B %@ O
o O O +» O
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Example

Thus, the system is consistent if and only,fb,, bs, b,
andb. satisfy the conditions

2 - 3, =
2h- 4, =
4, - 5b, o, =

or, on solving this homogeneous linear systembr-4s,
b,=4r-3s, b;=2r-s, b,=r, b-=swherer ands are arbitrary.
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Fundamental Spaces of a Matrix

Six Important vector spaces associated with a matrix
Row space ofA, row space oAT

Column space ofA, column space o&’

Null space ofA, null space ofAT

Transposing a matrix converts row vectors into column
vectors

¢ Row space oA" = column space ok

¢ Column space oA = row space oA

These are called the fundamental spaces of a nfatrix

49



Theorem 4.8.7

if Ais any matrix, then rank{ = rank@")

Proof:

¢ Rank@) = dim(row space of\) = dim(column space &&') =
rank(AT)

If Ais anm xn matrix, then ranKnullity(A)=n.

rank(AT)+nullity(AT) =m

The dimensions of fundamental spaces

Fundamental Space | Dimension

Row space of r

Column space oA r

Nullspace ofA nir

T )
Nullspace ofA mir 50




Recap

Theorem 3.4.3: IA is anm Un matrix, then the solution
set of the homogeneous linear sys#&xw0 consists of all
vectors InR" that are orthogonal to every row vectorof

The null space oA consists of those vectors that are
orthogonal to each of the row vectors2of
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‘ Orthogonality

A Definition

¢ LetWbe a subspace &F, the set of all vectors IR" that
areorthogonal to every vector Wis called theorthogonal

complement ( ) of W,

¢ If Vis a plane through the o
product, therihe set of all ve

and is denoted by

rigin B? with Euclidean inner
ctors that are orthogonal to

every vector inV forms the line L through the origin that

IS perpendicular ty'.

pa—

Yy
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Theorem 4.8.8

Theorem 4.8.8

If Wis a subspace of a finftimensionakpaceR", then:
W' is a subspace &®. ( Mgpad pi )
The only vector common &/ andW' is O; that is \WW AW = 0.
The orthogonal complement @ is W, that is ,(W")" = W.
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‘ Example

A Orthogonal complements

y

N —
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Theorem 4.8.9

Theorem 4.8.9

c If Ais anm® n matrix, then:

Thenull space oA and therow space oA are
orthogonal complements R

Thenull space oAT and thecolumn space oA are

orthogonal complements R"
AZ Az
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Theorem 4.8.10 (Equivalent
Statements)

If Ais anm? n matrix, and ifT,: R"- R"is multiplication byA, then the following are
equivalent:

Alis invertible.

Ax = 0 has only the trivial solution.

The reduced rovechelon form oAis |,

Ais expressible as a product of elementary matrices.

Ax = b is consistent for eveny® 1 matrixb.

Ax = b has exactly one solution for even§/1 matrix b.

det@®) | O .

The column vectors dk are linearly independent.

The row vectors of are linearly independent.

The column vectors ok spanR".

The row vectors of spanR".

The column vectors ok form a basis foR".

The row vectors oA form a basis foR".

A has rankn.

A has nullity O.

The orthogonal complement of the nullspacé s R".

The orthogonal complement of the row spaca @f {0}.

O O 0 0 0 0 0 0 000000000
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Applications of Rank

Digital data are commonly stored in matrix form.
Rank plays a role because
In a matrix.

If Ais anm Un matrix of rankk, thenn-k of the column
vectors anan-k of the row vectors can be expressed in
terms ofk linearly independently column or row vectors.

The essential idea in many data compression schemes i
to approximate the original data set by a data set with
smaller rank that conveys nearly the same information.
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4.9

Matrix Transformations froR’
to RM




Functions fronR"to R Ry

b =f(a)
EFRH A e B

A functionis a rulef that associates with each element in
a setA one and only one element in a Bet

If f associates the elemeantvith the elemenb, then we
write b = f(a) and say thab is theimageof a underf or
thatf(a) is the value of ata.

The setA s called thedlomain( ) of f and the seB
IS called thecodomain( ) of 1.

The subset of the codomdiconsisting of all possible
values foif asa varies ovelA is called theange( )
of f.
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Examples

Formula Example Classification Description
Realvalued function of @ Function from
f (X) f (X) — X2 real variable Rto R
Realvalued function of | Function from
two real variables 2
(X, Y) (X y) =X +Yy? RoR
_ .2 | Realvalued function of | Function from
f (X Z) F(X%Y,2) =X three real variables RBto R
) y; 2 2
+y +2z
(X, XX ) = Reatvalued function of | Function from
EAVE RREE A ;
f (X11X2’---’>9.) nreal variables R'to R

2 2 2
XX+t X
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Function fromR"to R™

Supposd,, f,, , & are realvalued functions of
real varlalbles say

= f(Xp %, € ) X
W2: (XX €4) X
e
=f (X1’X2’ n) X
Thesem equatlons assign a unique point
(W, W n N R to each pointy;, %, € ,) IRR"

and tﬁus define a transformation fréhto R™. If we
denote this transformation dy R"- R™then

T (X, %, €,) X(Ww,w,, é& Jw
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‘ Function fromR"to R™

A If m = nthe transformatioii: R"-
operator ) onR".

RM|s called an
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Example: A Transformation fraird
to R3

Wy =T+ I9
Wy = 371X

wy = 1% — 25

Define a transfornT: R2Y R3

With this transformation, the image of the pomt &) IS

T(x1,x2) = (1 + 22, 37129, f% — 33%)

Thus, for examplel(1,-2) = (-1, -6, -3)
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Linear Transformations froR® to R™

A linear transformatioor alinear operatof m=n) T: R"- RMis
defined by equations of the form

W, = X TapX, +..1a, X, erfa eail a, 3 a; mXlﬂ
WSt Bk, o Wl S B 3 8y i
4 4 4 4 é4u é4 4 4 Ué4u
Wy = 80+ B ot B, Sl G A 3 A
or

W = AX

The matrixA = [g;] Is called thestandard matrifor the linear
transformatior, andT IS calledmultiplication byA.
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Example (Transformation and Linear
Transformation)

The linear transformatioh : R*- R3defined by the equations
Wy =2X T 3%, + X5 1 OX,
W, = 4X; + X, T 2X3+ X,

W3 = X | X5 + 4X3 £ -3 1 -5¢
the standard matrix for (i.e.,w =Ax)is A=g 1 -2 1
L & -1 4 0f

] [2 -3 1 —5] |

wo| = (4 1 =2 1| |7

w3 514 0] |

| W3] i I,
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Notations

Notations:

¢ If it Is important to emphasize thatis the standard
matrix forT, we denote the linear transformatibn
R'- R"by T, R"- R™. Thus,
TA(X) = AX
¢ We can also denote the standard matrixifby the
symbol [T], or

T(x) = [T]x
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Theorem 4.9.1

For every matrixA the matrix transformatiom,:R"Y R™
has the following properties for all vectarandv in R"
and for every scalds

¢ (@)Tx(0) =0

¢ (b) Ta(ku) =kTy(u) [Homogeneity property]

¢ Ta(U+v) =T,(u) + Tr(v) [Additivity property]

¢ TaA(U-V) =Tp(u) T Ta(v)

Proof: AO = 0, A(ku) = k(Au), A(u+v) = Au + Av, A(u-
V)=Au-Av
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Remark

A matrix transformation maps linear combinations of vectors

In R into the corresponding linear combination&ihin the
sense that

Ta(kiuyHous+ € Kup) = K Ta(uy)+HKoTa(uy) + ekifa(uy)
Depending on whethe&rtuples andn-tuples are regarded as

vectors or points, the geometric effect of a matrix

transformatioril,;R"Y R™is to map each vector (point) R
Into a vector iIrkM
R R™
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Theorem 4.9.2

If TAR'Y R"andTg: R"'Y R™are matrix
transformations, and ,(x) = Tz(x) for every vectok in
R", thenA=B.

Proof:

¢ To say thafl ,(x) = Tg(x) for every vectox in R"is the same as
saying thatAx = Bx for every vectox in R".

¢ This is true, in particular, X is any of the standard basis vectors
e,6, &forRthatisAe=Be (=1, ) e,

¢ Since every entry ad is O except for thgth, which is 1, it
follows from Theorem 1.3.1 th&g is thejth column ofA, and
Be is thejth column ofB. Therefore A =B.
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Zero Transformation

Zero Transformation fror®" to R

c If Ois them® n zero matrix and Is the zero vector
In R", then for every vectorin R

To(X) =0x=0
¢ So multiplication by zero maps every vectoRN

into the zero vector IR™. We callT, the zero
transformation fronir" to R™.
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ldentity Operator

ldentity Operator oIiR"
¢ If I'1s then3 nidentity, then for every vectorin R”
T,(X) =Ix=x
¢ So multiplication byl maps every vector IR" into
itself.

¢ We callT, theidentity operatoonR".
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A Procedure for Finding Standard
Matrices

To find the standard matri for a matrix transformations
from R"to R™

e.,e, & arethe standard basis vectorsRoar

Suppose that the images of these vectors under the
transformationr , are

Ta(e)=Ag,, TA(e,)=Ae,, @,(e) = Ae,
Ae Is just thgth column of the matrid, Thus,

A=[T1=[T(e) [T(e) | T(ed] |
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Reflection Operators

In general, operators d&f andR® that map each
vector into its symmetric image about some line or
plane are callec:flection () operators

Such operators are linear.
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Example

If we letw=T(x), then the equations relating the

components ot andw are
W, =-Xx=-X+ Oy
W,=y=0x+y
or, in matrix form

=10

The standard matrix for is [_01 ?]

(=%, y)

(X, y)

wM
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'Reflection Operators-&pace)

Standard

Operator IHlustration Equations Matrix
Reflection about w; = —Xx —1 0O
the y-axis Wwr= 'y 0 1
Reflection about Y o) wp= X 1 0
the x-axis x = 0 -1

{ - 2 b

: -
Reflection about w; =y 0 1
the 1iney=x Whr =X 1 0O
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'Reflection Operators-&pace)

Standard

Operator INustration Equations Matrix
Reflection about w; = X 1 O O
the xy-plane Wy = 1y 0) 1 0

W3 = —Z 0) (0] —1
Reflection about w; = Xx 1 O 0O
the xz-plane Wy = —y o -1 (0]

W3 = Z O (0) 1
Reflection about w; =—x —1 O O
the yz-plane wy= y 0 1 0

W3 = Z 0 () 1




Projection Operators

In general, arojection operatofor more precisely an
orthogonal projection operajoon R? or R® is any
operator that maps each vector into its orthogonal
projection on a line or plane through the origin.

The projection operators are linear.
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Example

Consider the operatdr R? Y R?that maps each vector
Into its orthogonal projection on tixeaxis. The equations
relating the components rfandw=T(x) are

W; = X=X+ Qy

w,=0=&+ Oy
or, in matrix form

o) = bl 1) G

X

The standard matrix for is [(1) 8] S5
w=T(x) . 0)
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‘ Projection Operators

Standard

Operator Illustration Equations Matrix
Orthogonal projection LY Wy=2Xx 1 0
on the x-axis | (x,y) W,y =0 0 0

X

l
30 X

W

Orthogonal projection AY wy =0 [ 0 OJ

on the y'aXiS (0, y)y———— (x,y) Wy =Yy 0 1
-
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‘ Projection

Operators

Standard

Operator INustration Equations Matrix
Orthogonal projection w;=Xx 1 O O
on the xy-plane ws =1y O 1 0
Orthogonal projection w,=x 1 O O
on the xz-plane ws =0 O O O
L w3 =2 O O 1
Orthogonal projection w; =0 O O O
on the yz-plane Wsr =1y O 1 O
W3 =2 O 0 1
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'Rotation Operators

A The rotation operator T:R2Y R2moves points
counterclockwise about the origin through an angley

A FInd the standard matrix
A T(e) =T(1,0) = (cog, sing) |

A T(e) =T(0,1) = €sing, coxy)

Standard
Operator Ilustration Equations Matrix

Rotation through y (wy, w,) wy=xcos0 —ysinf cos® —sinf
B an angle 6 w " wyr=xsin@ + y cos 6 sin 6 cos 6 o
@I > (x, y)
' X 31

Y =




Example

If each vector irR? is rotated through an angle pf6
(30) ,then the imagw of a vector

e
&yu

< o . é\/é/ ) g\ é\/é/ i g
cosls S'”’%ﬁ@Xg_é 2 %U@X{J_é > %= oV

is w=°¢€

. LU= é VR ‘
gsm% cosl%S HeYH g}é \/52 HeYu g}éxp/géyﬁ

For example, the image of the vector
e\/3- 12

&Slos e u
X=agaisw=¢€& =< _u
Sy &1L+ /3 U

[ =5 Ul

e 2 U

82



A Rotation of Vectors IR®

A rotation of vectors ifR®is usually described
In relation to a ray emanating from () the
origin, called theaxis of rotation

As a vector revolves around the axis of rotatio
It sweeps out some portion of a cqne ).

Theangle of rotations described afclockwised
or icounterclockwisein relation to a viewpoint
that is along the axis of rotatidmoking toward
the origin.

The axis of rotation can be specified by a
nonzero vectou that runs along the axis of
rotation and has its initial point at the origin.

The counterclockwise direction for a rotation
about its axis can be determined hyight-
hand rule.

L

\ <

(Axis of rotation)

Plos ) ro ke
.’/.'
‘v‘

(a) Angle of rotation

A

\ <

Counterclockwise
rotation

(S

X

Y

(b) Right-hand rule
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‘ A Rotation of Vectors IR®

i Standard
| Operator IlNlustration Equations Matrix
Counterclockwise z W, =x 1 0 0
rotatioq e_‘bOUt _ Wy =y cos O — zsin@ 0O cos® —sin@
the positive x-axis w3 =ysin@ + z cos 6 0O sin6 cos 6
through an 5
angle 6 >
r Counterclockwise w; =xcos 8@ + zsin@ cos@ 0O sin@
| rotation about Wy =y 0 1 0
| the positive y-axis w3 =— xsin@ + zcos @ —sin@® 0O cos@
| through an
I| angle 6
i | Counterclockwise w; =xcosB —ysin@ cos@ —sin @ 0
{| rotation about w>=xsin@ + ycos 6 sin @ cos@® O
the positive z-axis Wa =2z 0 0 1
through an
angle 6
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Dilation and Contraction Operators

If kis a nonnegative scalar, the operatoReor R® is
called a contraction with factéri f k@ @ ( Kk
) and a dilation with factdkif kO 1 ( k ).

Standard
Operator Illustration Equations Matrix

Contraction with w; =kx
factor k on R3 Wy = ky
0<k<1) ws = kz

k 0 O

0O £ O

Dilation with wy = kx 0 0 k
factor k on R3 w, = ky
(k=1) ws = kz
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Compression or Expansion

If T: R2Y RZis a compression (&k<1) or expansion
(k>1) in thex-direction with factok, then

rersr (@ rer-r(f)-¢
1)

Similarly, the standard matrix for a compression or
expansion in thg-direction is|! 0]
0k

9 ) ()
(xky)
86

so the standard matrix faris




Shears

A shear () In the x-direction with factor kis a
transformation that moves each pomy) parallel to the
X-axis by an amourkyto the new positionxgky,y).

Points farther from thg-axis move a greater distance
than those closer.

y y
(X+ky.y)

(X.Y) 7 (x+ky,y) —7\

X X
k>0 k<O
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Shears

If T: R2Y R2is a shear with factdecin thex-direction, then

(1Y e+ Ry (14RO 1

T(el)_T(_O_>__ y _—_ 0 ___O_

B 01\  [z+ky|l [0+FK1] [k

T(Bg)—T(_l_)—_ y _—_ 1 — 1
The standard matrix foF is [1 k]
01

Similarly, the standard matrix for a shear in yrgirection
with factorkis |1 0
k1




Example (Standard Matrix for a Projectic
Operator)

Let| be the line in th&y-plane that passes through the
origin and makes an angdawith the positivex-axis,

wh er ggOf LeX: R2- R2be a linear operator that
maps each vector into orthogonal projectior.on

¢ Find the standardhatrix forT. ﬁ y

¢ Find the orthogonal projection of ]
the vectoix = (1,5) onto the line
through the origin that makes an
angle ofg = p/6 with the positive
X-axis. :

T(x)
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Example

The standard matrix for can be written as A Y

[T]1=1T(e) | T(&)]
Consider the case®q ¢ p/2.

¢ |[T(e)ll = coxy
dT(e)|cosgg & codqg o
T( ): _ 1= A _ <
= e g‘T(el)Hqua &sing cosgy] .
¢ [[T(e)]| = sing A\
g'T(ez)”COSC/ﬂ esingcosgg €, L8\
9 € 2 Y |

mm) (&)= . u=¢é
. 4T (ex)|singy 6 sing

€ cosqg singcosgo
=) [T]=¢ T
gingcosy  sifqg
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e cosqg singcosyo

Example [r]=¢ G

gsingcosg  sinfg

Since sin §/6) = 1/2 and cop(6) =+/3 /2, it follows
from part (a) that the standard matrix for this projection

operator Is

&3/4 J3/40

[T1=¢ X

6/3/4 14y
Thus, 83+5,/39
(S u
_I_aelzo /4 V3/4mle_T 4 |
é%u- @f/4 1/4% €/3+5 U
e 4 H

91



Reflections About Lines Through the
Origin
Let P, denote the standard matrix of orthogonal projections or
lines through the origin
PXxi x=(1/2)H,xT x), or equivalentlyH x = (2P,1 I)x
H, =(@2P,1 1)

}ﬁ)::[COSQQ sin 26 ]

sin 20 — cos 26
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4.10
Properties of Matrix
Transformations




Composition off ; with T,

Definition
¢ If T,: R"- R<andT;: R¢<- R™are linear transformations,
the composition of Jlwith T,, denoted by, T, ( r e & d
circeT,0) , is the function def
(Tee TAX) =T(Ta(x))
wherex is a vector IrR".

L) / o / it
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Composition ofl g with T,

This composition is itself a matrix transformation since
(Tee  TAO)=(Te(Ta(X))=B(TA(X))=B(AX)=(BA)X

It Is multiplication byBA, 1.e. Ty, T, =Tga

The compositions can be defined for more than two linea

transformations.

For example, I : U- VandT,: V- W ,andT,;: W-

Y are linear transformations, then the composilign

T,. T,isdefined by(T,, T,. T,)(u)=T,(T, (T,

(u)))
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Remark

It is not true, In general, thAB = BA
Soitis nottrue, in general, thB, T,=T, Tg
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Example

Let T;R?Y RZandT,:R?Y RZbe the matrix operators that
rotate vectors through the angtésandd,, respectively.

The operation{,, T))(X)=T,(T,(x)) first rotatesx through the
angled,, then rotate3,(x) through the angld..

- [cos 91 —sin 91] _— [

sinfy cos 6,
cos(01 + 6) —sin(6y + 65)
sin(fy + 6) cos(6y + 605)

cos By — sin 6
sin @y cos by

TyoT)) = [
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