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Multiple Continuous Random Variables (1/2)

« Two continuous random variables X and Y associated
with a common experiment are jointly continuous and can
be described in terms of a joint PDF fX,y satisfying

P(X.Y)e B)= || fxy(x,y)dxdy
(x.y)eB

- fX,Y IS a nonnegative function

— Normalization Probability Jiooo jiooo fX,Y (X, y)dxdy =1

» Similarly, fx y (a,c) can be viewed as the “probability per
unit area” in the vicinity of (a, c)
Pla<X<a+5,c<Y<c+0)

o) o) 2
:LT ICH fX,Y(xay)dXdy ZfX,Y(aaC)'5
— Where o is a small positive number
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Multiple Continuous Random Variables (2/2)

Marginal Probability
P(Xecd)=P(X edand Y e (—,))
= IxealZe fX,Y(xay)dydx

— We have already defined that
P(X € 4)= leA £y (x)dx
We thus have the marginal PDF

Ix (x): fjooo fxy (an/)dy
Similarly

fy (0)= 17, fyy (3, y)dx
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An lllustrative Example

« Example 3.10. Two-Dimensional Uniform PDF. We are told that
the joint PDF of the random variables X and Y is aconstant ¢
onanarea S andis zero outside. Find the value of ¢ and the
marginal PDFs of X and Y.

The correspond ing uniform joint PDF on y y
an area S is defined to be (cf. Example 3.9) - 4
1
if (x, S
fX’Y(x,y): Size of area S’ : (xy)e :I S
0, otherwise 1 2
1
= fxy (xy)= 2 for (xy)es [ 14 :
i) 12 g
for 1<x<2 for 1<y<2 fX()M
X 1/4
4
= fx ()=} fxy (xy My = fy (V)= fiy (oy i .
41 3 21 |
= —dv =— = —dx =— < <
R 1= f0r3_y_4;
for 2<x<3 for 2< y<3 = fy(»)=1 Sy (xyHx
3 3
= fx (x)=[5 fxy (xy Hy = fy(v)=1F Sy oy il
4 4
31 1 31 1
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Joint CDFs

« If X and Y are two (either continuous or discrete)
random variables associated with the same experiment ,
their joint cumulative distribution function (Joint CDF) is

defined by
Fyy(x,y)=P(X <x,Y <y)

— If X and Yy further have a joint PDF fy y ( X and Y are
continuous random variables) , then

Fyyloy)=1"012 fxry (s, 2 )dsdt

And )
O FX Y(X,J/)
fX,Y(xay): a,

x0y

|f Fyy can be differentiated at the point (x,y)
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An lllustrative Example

« Example 3.12. Verify that if X and Y are described by a
uniform PDF on the unit square, then the joint CDF is
given by

FX,Y(x,y): P(X <x,Y < y): xy, for0<x,y<lI
Y A
(0.1) (L)

0,0) (10)

8ZFX,Y(xa Y)
Ox0y

=l=fyy (x,v), forall(x,y)in the unit square

Probability-Berlin Chen 6



Expectation of a Function of Random Variables

 If X and Y are jointly continuous random variables,
and g is some function, then Z = g(X,Y) is also a
random variable (can be continuous or discrete)
— The expectation of Z can be calculated by

E[Z]=Elg(x.Y)]= 17, [%, g(x,»)/x y (x. y dxdy

— If Z isalinear functionof X’ and Y ,e.qg., Z =aX +bY ,then
E|Z]|=E|aX +bY |=aE[X |+ bE|Y]
« Where a and b are scalars

We will see in Section 4.1 methods for computing the PDF of Z (if it has one). Probability-Berlin Chen 7



More than Two Random Variables

The joint PDF of three random variables ¥, Yy and Z
Is defined in analogy with the case of two random
variables

P((X.Y.2)e B)= (Il fyy s (x,y.2 Mudvs
(X.,Y,Z)B

— The corresponding marginal probabilities
fX,Y(xay): Ijow fX,Y,Z (x,y,z)dZ

fx (x): jjooo jjooo fX,Y,Z (x,y,z)dydz
The expected value rule takes the form
Elg(X,Y.Z)|= 12,12, [0, g(x,y,2)fxy 2 (x, v, 2 Jdxdy dz
— If g islinear (of the form aX +bY +c¢Z ), then
E[aX +bY +cZ|=aE|X |+ bE[Y ]|+ cE[Z]
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Conditioning PDF Given an Event (1/3)

 The conditional PDF of a continuous random variable X,
given an event A

— If A cannot be described in terms of X, the conditional PDF
is defined as a nonnegative function fX‘A (x) satisfying

P(X < B|A): I fX\A (x x

« Normalization property

|2 fX\A (x);ix =1
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Conditioning PDF Given an Event (2/3)

— If 4 can be described in terms of X ( 4 is a subset of the real
line with P(X € 4)> 0), the conditional PDF is defined as a
nonnegative function f 4 (x) satisfying

f X (x ) if ! o X
, xe A
fep ()= 1P (x € ) o
0, otherwise
yd
* The conditional PDF is zero outside the a b X

conditioning event
J x |4 remains the same shape as

and for any subset B fx except that it is scaled along
the vertical axis
P(X c BlX c4)- P(X eB,Xe4)
P(X € 4)
_ ling fx (x )dx
P(X € 4)

= [uns fX|A (o Jex

— Normalization Property [*, fy |4 (x)dx = [, fy |4 (x)dx =1
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Conditioning PDF Given an Event (3/3)

- If 4y, A,,..., A, are disjoint events with P(4;)> 0 for
each 1, that form a partition of the sample space, then

Sx (x)= iZZ:IP(Ai)fX‘AZ- (x)

— Verification of the above total probability theorem

think of {x < x} as anevent B,

and use the total probability theorem

P(X < x): _ZP(AZ' )P(X S X Ai) from Chapter 1

= [, fx (t)dt = éP(Ai )Iicw fX|Al. (t)dt

Taking the derivative of both sides with respectto x

= fx (x): iP(Ai )fX|Al. (x)
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lllustrative Examples (1/2)

« Example 3.13. The exponential random variable is
memoryless.

— The time T until a new light bulb burns out is exponential
distribution. John turns the light on, leave the room, and when he
returns, t time units later, find that the light bulb is still on, which
corresponds to the event A={T>{}

— Let X be the additional time until the light bulb burns out. What is

the conditional PDF of X given A ?
X=T-t, A={T >}

T'is exponential The conditional CDF of X given Aisdefinedby - The conditional PDF of X given
£(6)= {/Ie—ﬂf, t>0 Plx > x|A): Pr—t> AT > t) (where x > 0) the event 4 is also exponentia |
- 0, otherwise P(T sttxand T> t) with parameter A.
N :P(T>t+x|T>t):
PT>t)=¢ P(T > 1)
3 P(T > 1+ x)
-~ P(T>1)
e—/l(t+x)
T o
= oA
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lllustrative Examples (2/2)

Example 3.14. The metro train arrives at the station near your home
every quarter hour starting at 6:00 AM. You walk into the station
every morning between 7:10 and 7:30 AM, with the time in this
interval being a uniform random variable. What is the PDF of the
time you have to wait for the first train to arrive?

Fyd(X) fna(y) - The arrival time, denoted by X, is a uniform random
1 Us h variable over theinterval 7:10to 7 : 30
- Let random varible Y model the waiting time
1/20 -Let Abeaevent
=10 715 730 x 5 - A={7:IOSX£7:15}(Youboardthe7:15train)
(a) (b) -Let Bbea event
fyly) yiy) B={7:15< X <7:30}(You board the 7 : 30 train)
A A
- Let Y be uniform conditioned on A4
1/10 - Let Y be uniform conditioned on B
V13 120
IRE Y 5 15 ) 1 1 3 1 1
(©) @ ForO0<y<5, P ===t = —=—
e AR TRT,
Total Probability theorem: 1 3 1 1
For5<y<l15, P(y)=—0+>—=—
Py (y)= P(A)Py 4 (v)+ P(B)Py 5 (») 4 415 20
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Conditioning one Random Variable on Another

« Two continuous random variables X and Y have a joint
PDF. Forany ¥ with fy(y)>0, the conditional PDF of X
given that Y = y is defined by

fx|y (x‘y) = fXJf; E;,)y)

— Normalization Property EOOO fX\Y (x‘y)dx =1

* The marginal, joint and conditional PDFs are related to
each other by the following formulas

fX,Y (x,y)z Iy (y)fX\y (X‘J/),
fX (X) — ﬁooo fX’Y (X, y)dy. marginalization
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lllustrative Examples (1/2)

* Notice that the conditional PDF fX‘Y(X\y) has the same
shape as the joint PDF fxy(x,»), because the
normalizing factor f,(y) does not depend on x

A 3.5) 1/4

. : Fyy(x]3.5) ) Sxr(63.5) 174

3 o Fxy(x12.5) *  fry(®25) 174

5 1 Fxv(x]1.5) A fos(63.5)- fxy(x15) 1/4

1 1 2 3 x XTI s T4
1 2 3 - cf. example 3.13

Figure 3.16: Visualization of the conditional PDF f){‘y(x‘J’) :

Let X, Y have ajoint PDF which is uniform on the set § . For
each fixed y , we consider the joint PDF along the slice Y = y
and normalize it so that it integrates to 1
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lllustrative Examples (2/2)

« Example 3.15. Circular Uniform PDF. Ben throws a dart at a
circular target of radius ». We assume that he always hits the target,
and that all points of impact (x, y ) are equally likely, so that the
joint PDF fX,y(x,y) of the random variables x and Y is uniform

— What is the marginal PDF fy (») Y

( 1
, 1f(x, y)is in the circle
fX,Y(x,y)=< area of the circle ( y) K>\
0, otherwise
(1 2., 2,2
N X +y =sr

X

0, otherwise
Sxy (x)’)
fX\Y(x|y)
1 fr ()
fY(y) I— fXY(xy)dx J-xz—}-y <r2 - 2 dx 1
2
— r
2
S <r21dx——jwﬁy ldx Sy
ﬂ:; = 1 , ifx 2+ y2<r?
= 2=y i |y|<r 2r? = 32
r

Foreachvalue y , fy (x]y) is uniform

Notice here that PDF 1S not uniform
( fY (y) ) Probability-Berlin Chen 16



Conditional Expectation Given an Event

* The conditional expectation of a continuous random
variable X, given anevent 4 (P(4)>0), is defined by

E[X[4]= 17, of x4 ()

— The conditional expectation of a function g(X) also has the
form

Elg(x)4]=17, g(x) .4 (x)dx
— Total Expectation Theorem

E[X] = éP(Ai )E[X‘Ai]

E[g(X)]= %P 4, )Eg(X)|4;]

 Where 4,,4,,...,4, are disjoint events with P(4;,)>0 for
each ;,that form a partition of the sample space

and
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An lllustrative Example

« Example 3.17. Mean and Variance of a Piecewise Constant PDF.
Suppose that the random variable X has the piecewise constant

PDF 1/3, if0<x<l,
fr(x)=12/3, if1<x<2, W
0, otherwise. 23
Define event 4, = {X lies in the first interval [0,1]} 3
event 4, = {X lies in the second interval [1,2]}
= P(4,)=[)1/3dx =1/3, P(4,)=[>2/3dx =2/3 1 7 "
felx) g gee S e
fejg ()= P(X € 4) fej, ()= P(X € 4;)
0, otherwise 0, otherwise
Recall thatthe mean and second moment of — E[X]: P(Al )E [X‘A1]+ P(A2 )E [X‘Az]

a uniform random variable over an interval

=1/3-1/2+2/3-3/2=7/6
[a b]is (a+b)/2 and (a2+ab+b2)/3

E[X2]= P(Al)E[X2\A1]+ P(AZ)E[X2\A2]
~1/3-1/3+2/3-7/3=15/9
~ovar(X)=15/9-(7/6) =11/36

= E[x|4,]=1/2,E[x?4,]=1/3

E[x|4,]=3/2,E[x?[4,]=7/3
Probability-Berlin Chen 18



Conditional Expectation Given a Random Variable

* The properties of unconditional expectation carry though,
with the obvious modifications, to conditional expectation

E

E

E

-X‘Y = y]: 1 fo|Y(x\y)dx

(XY =y =17, g(x)fypy (x]y )ox

(X, Y)Y = y]= 1, g (. ) ypy (] Jan
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Total Probability/Expectation Theorems

» Total Probability Theorem

— For any event 4 and a continuous random variable Y

P(4)=[" P4y = y)fy (y)dy

« Total Expectation Theorem

— For any continuous random variables X and Y

ELY]= 1%, E[x]Y = y]fy (v)as

E[g(X)]=[" Elg(X )Y = »]fy ()ay
E[g(x,Y)]=]", Elg(X, Y)Y = »]fy (v)dv
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Independence

e Two continuous random variables X and Y are

independent if

fX,Y(an’)z fx (x)fy(y), for all x,y

— Since that

fX,Y(xay): fY(y)fX\Y(x‘y): fX(x)fy\X(y‘x)

« We therefore have

Sy (fy)= fx (x), forallxandall y with fy(y)>0

* Or
Sy Olx)= £y (), forall yandall x with £ (x)>0
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More Factors about Independence (1/2)

* |f two continuous random variables X and Y are
iIndependent, then

— Any two events of the forms {X S A}and {Y S B} are
independent

P(X € 4,Y e B): IxeAIyeB fxy (x,y)dydx
= Jrea yeB fx (x)fY (y)dydx
SNSRI (WA
=P(X € 4)P(Y € B)

— It also implies that

Fyy(xy)=P(X <x,Y <y)=PX <x)P(Y < y)= Fy (x)Fy (x)

— The converse statement is also true (See the end-of-chapter
problem 28)
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More Factors about Independence (2/2)

 |If two continuous random variables X and Y are

Independent, then
- E[xY|=E[x[E[Y]

_ Var(X + Y)= Var(X)+ Var(Y)

— The random variables g(X) and #(y) are independent for any
functions g and #

 Therefore,

Elg(x )n(Y)]=E[g (X )E[A(Y))
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Recall: the Discrete Bayes’ Rule

e Let 4,,4,,...,4, be disjoint events that form a partition of
the sample space, and assume that P(4,)>q for all i .
Then, for any event B such that p(B)>0 we have

P(Ai‘B): P(Ailzl()zgl);‘Ai) @ Multiplication rule
)

(B‘A Total probability theorem
Zk -1 ( k)P(B‘Ak)
P(4;)P (B\A)
4 )P(B|4)+--+P(4, P(B]4,)
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Inference and the Continuous Bayes’ Rule

* As we have a model of an underlying but unobserved
phenomenon, represented by a random variable X with
PDF fy, and we make a noisy measurement Y , which
iIs modeled in terms of a conditional PDF fy‘X. Once the
experimental value of Y is measured, what information
does this provide on the unknown value of X ?

X Measurement ! » Inference |——
fx (%) Ty|x (;V‘x) fX\Y(x‘y)
, S () fyix fx
fX\Y(x‘J’): fxy(xy)  fx Y\X( | )

fr(v) [l fX(f)fY\X(y‘t)dt

Note that

foy\X il fX,Y i fyfx\y
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Inference and the Continuous Bayes’ Rule (2/2)

Inference about a Discrete Random Variable

If the unobserved phenomenon is inherently discrete

— Let N is a discrete random variable of the form {N =#} that
represents the different discrete probabilities for the unobserved
phenomenon of interest, and py be the PMF of N

P(N = nlY ZY)z P(N =n|y<Y < y+5)
P(N =n)P(y <Y < y+5|N =n)
P(y<Y<y+9)
_Pw (”)fy\zv (y\n)é
A
Dy (n)fY‘N (y‘n) ? Total probability theorem

i Zl: pN(i)fY\N(y‘i)
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lllustrative Examples (1/2)

« Example 3.19. A lightbulb produced by the General lllumination
Company is known to have an exponentially distributed lifetime Y .
However, the company has been experiencing quality control
problems. On any given day, the parameter A = 4 of the PDF of ¥
is actually a random variable, uniformly distributed in the interval
1, 3/2] .

— If we test a lightbulb and record its lifetime ( v = ), what can
we say about the underlying parameter 1 ?

_ —Ay Conditionedon A = 4 ,Y has a exponential distribution
frn2)=2e, y20,2>0

with parameter A4
2, for1<A<3/2
fa(d)=

0, otherwise

fa @) fyin (0]2) 24
fA‘Y(;t‘y): 3/2A i -

= , forl1<A<3/2
1 fA(t)fy‘A()"t)df 13/22te_zydt
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lllustrative Examples (2/2)

« Example 3.20. Signal Detection. A binary signal S is transmitted,
and we are given that P(S=1)=p and P(S=-1)=1-p .
— The received signalis Y = § + N, where N is a normal noise
with zero mean and unit variance , independent of S .
— What is the probability that s=1 , as a function of the observed value

y of ¥ ?
fy|s(y\S)=\/2L e=)/2 for s =1and -1,and -0 < y < o0
TO

Conditioned on §' = s, Y has a normal distribution with mean S and unit variance
)_ Ps(l)fy\s (y‘l)_ pS(l)fYS(y‘l)
fr(») PS(I)fy\S()"l)JF Ps (—l)fy\s(y‘—l)

R () b

P(S=1r =y

p

_ N2
» L -Gz, (1_p)ie—(y+1)2/2
N2rm ,, N2r
e_(y2+1)/2 - pe” pe”

e V2 per o DTN (1 pYey et 4 (1= ple”?
: Probability-Berlin Chen 28



Inference Based on a Discrete Random Variable

- The earlier formula expressing  P(4]y = y) in terms of
oy (») can be turned around to yield

fy|A( ) fY( )ngj‘)yzy) ]
B fY( ) (A‘Y_y) ? '
j_ fy (t) (A\Y_t)dt

P(4)fy, ()= fy )RA4]Y = y)
= P(A)fY|A (y)dy = (J’)P(A‘Y = y)dy
— Pl [ (y)P(A‘Y - y)dy (" normalizat ion property : [~ fY|A (y)dy =1)
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Recitation

« SECTION 3.4 Joint PDFs of Multiple Random Variables
— Problems 15, 16

« SECTION 3.5 Conditioning
— Problems 18, 20, 23, 24

« SECTION 3.6 The Continuous Bayes’ Rule
— Problems 34, 35
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