Discriminative Learning in Speech Recognition

Yueng-Tien, Lo
g96470198@csie.ntnu.edu.tw
Speech Lab, CSIE
National Taiwan Normal University

Reference
Xiaodong He and Li Deng. "Discriminative Learning in Speech Recognition,“
outline

• introduction
• Discriminative Learning Criteria of MMI, MCE and MPE/MWE
• The common rational-function form for objective functions of MMI, MCE, and MPE/MWE
• Optimizing Rational Functions By Growth Transformation
• Discriminative Learning for Discrete HMMs Based on the GT Framework
Introduction (1/3)

• Discriminative learning has become a major theme in recent statistical signal processing and pattern recognition research including practically all areas of speech and language processing.

• A key to understanding the speech process is the dynamic characterization of its sequential or variable-length pattern.

• Two central issues in the development of discriminative learning methods for sequential pattern recognition are:
 1. construction of the objective function for optimization
 2. actual optimization techniques
Introduction(2/3)

• There is a pressing need for a unified account of the numerous discriminative learning techniques in the literature.

• To fulfill this need while providing insights into the discriminative learning framework for sequential pattern classification and recognition.

• It is our hope that the unifying review and insights provided in the article will foster more principled and successful applications of discriminative learning in a wide range of signal processing disciplines, speech processing or otherwise.
• In addition to providing a general overview on the classes of techniques (MMI, MCE, and MPE/MWE), this article has a special focus on three key areas in discriminative learning.

• First, it provides a unifying view of the three major discriminative learning objective functions, MMI, MCE, and MPE/MWE, for classifier parameter optimization, from which insights to the relationships among them are derived.

• Second, we describe an efficient approach of parameter estimation in classifier design that unifies the optimization techniques for discriminative learning.

• The third area is the algorithmic properties of the MCE and MPE/MWE based learning methods under the parameter estimation framework of growth transformation for sequential pattern recognition using HMMs.
Discriminative Learning Criteria of MMI, MCE and MPE/MWE (1/2)

- MMI (maximum mutual information), MCE (minimum classification error), and MPE/MWE (minimum phone error/minimum word error) are the three most popular discriminative learning criteria in speech and language processing, which are the main subject of this paper.

- To set up the stage, we denote by Λ the set of classifier parameters that needs to be estimated during the classifier design. For instance in speech and language processing, a (generative) joint distribution of observing a data sequence X given the corresponding labeled word sequence S can be written as follows:

$$p(X,S|\Lambda) = p(X|S,\Lambda)p(S)$$
Discriminative Learning Criteria of MMI, MCE and MPE/MWE (2/2)

- it is assumed that the parameters in the “language model” $P(S)$ are not subject to optimization.

- Given a set of training data, we denote by R the total number of training tokens.

- In this paper, we focus on supervised learning, where each training token consists of an observation data sequence: $X_r = x_{r,1}, \ldots, x_{r,T_r}$, and its correctly labeled (e.g., word) pattern sequence: $S_r = W_{r,1}, \ldots, W_{r,N_r}$, with $W_{r,i}$ being the i-th word in word sequence S_r.

- We use a lower case variable S_r to denote all possible pattern sequences that can be used to label the r-th token, including the correctly labeled sequence S_r and other sequences.
Maximum Mutual Information (MMI) (1/3)

- In the MMI-based classifier design, the goal of classifier parameter estimation is to maximize the mutual information $I(X,S)$ between data X and their corresponding labels/symbols S.

- From the information theory perspective, mutual information provides a measure of the amount of information gained, or the amount of uncertainty reduced, regarding S after seeing X.

- Mutual information $I(X,S)$ is defined as

$$I(X,S) = \sum_{x,s} p(X,S) \log \frac{p(X,S)}{p(X)p(S)} = \sum_{x,s} p(X,S) \log \frac{p(S|X)}{p(S)} = H(S) - H(S|X) \quad (2)$$

where $H(S) = -\sum_s p(S) \log p(S)$ is the entry of S, and $H(S|X)$ is the conditional entropy given data X:

$$H(S|X) = -\sum_{x,s} p(X,S) \log p(S|X)$$

When $p(S|X)$ is based on model \mathcal{A}, we have

$$H(S|X) = -\sum_{x,s} p(X,S) \log p(S|X,A) \quad (3)$$
Maximum Mutual Information (MMI) (2/3)

• Assume that the parameters in $P(S)$ (“language model”) and hence $H(S)$ is not subject to optimization. Consequently, maximizing mutual information of (2) becomes equivalent to minimizing $H(S|X)$ of (3) on the training data. When the tokens in the training data are drawn from an i.i.d. distribution, $H(S|X)$ is given by

$$H(S|X) = -\frac{1}{R} \sum_{r=1}^{R} \log p(S_r|X_r, \Lambda) = -\frac{1}{R} \sum_{r=1}^{R} \log \frac{p(X_r, S_r | \Lambda)}{p(X_r)}.$$

• Therefore, parameter optimization of MMI based discriminative learning is to maximize the following objective function:

$$O_{\text{MMI}}(\Lambda) = \sum_{r=1}^{R} \log \frac{p(X_r, S_r | \Lambda)}{p(X_r)} = \sum_{r=1}^{R} \log \frac{p(X_r, S_r | \Lambda)}{\sum_{S_r} p(X_r, S_r | \Lambda)} \quad (4)$$

• The objective function O_{MMI} of (4) is a sum of logarithms. For comparisons with other discriminative training criteria in following sections, we construct the monotonically increasing function of exponentiation for (4). This gives

$$\tilde{O}_{\text{MMI}}(\Lambda) = \exp[O_{\text{MMI}}(\Lambda)] = \prod_{r=1}^{R} \frac{p(X_r, S_r | \Lambda)}{\sum_{S_r} p(X_r, S_r | \Lambda)} \quad (5)$$
Maximum Mutual Information (MMI) (3/3)

- It should be noted that \tilde{O}_{MMI} and O_{MMI} have the same set of maximum points, because maximum points are invariant to monotonically increasing transforms. For comparisons with other discriminative training criteria, we rewrite each factor in (5) as

$$
\frac{p(X_r, S_r | \Lambda)}{\sum_{s_r} p(X_r, s_r | \Lambda)} = 1 - \sum_{s_r \neq S_r} P(s_r | X_r, \Lambda) = 1 - \sum_{s_r} \left(1 - \delta(s_r, S_r) \right) P(s_r | X_r, \Lambda).
$$

- We define (6) as the model-based expected utility for token X_r, which equals one minus the model-based expected loss for that token.
Minimum “Phone” or “Word” Errors (MPE/MWE)(1/2)

- In contrast to MMI and MCE described earlier that are typically aimed at large segments of pattern sequences (e.g., at string or even super-string level obtained by concatenating multiple pattern strings in sequence), MPE aims at the performance optimization at the sub-string pattern level.
- The MPE objective function that needs to be maximized is defined as

\[
O_{\text{MPE}}(\Lambda) = \sum_{r=1}^{R} \frac{\sum_{s_r} p(X_r, s_r | \Lambda) A(s_r, S_r)}{\sum_{s_r} p(X_r, s_r | \Lambda)}
\]

- where \(A(s_r, S_r)\) is the raw phone (sub-string) accuracy count in the sentence string \(S_r\).

The raw phone accuracy count \(A(s_r, S_r)\) is defined as the total phone (sub-string) count in the reference string \(S_r\) minus the sum of insertion, deletion and substitution errors of \(s_r\) computed based on \(S_r\).
Minimum “Phone” or “Word” Errors (MPE/MWE)(2/2)

• The MPE criterion (18) equals the model-based expectation of the raw phone accuracy count over the entire training set. This relation can be seen more clearly by rewriting (18) as

\[
O_{\text{MPE}}(\Lambda) = \sum_{r=1}^{R} \sum_{s_r} P(s_r \mid X_r, \Lambda) A(s_r, S_r)
\]

where \(p(s_r \mid X_r, \Lambda) = \frac{p(X_r, s_r \mid \Lambda)}{p(X_r \mid \Lambda)} = \frac{p(X_r, s_r \mid \Lambda)}{\sum_{s_r} p(X_r, s_r \mid \Lambda)} \) is the model-based posterior probability

• Based on raw word accuracy count \(A_i(s_r, S_r) \), we have the equivalent definition of the MWE criterion:

\[
O_{\text{MWE}}(\Lambda) = \sum_{r=1}^{R} \frac{\sum_{s_r} p(X_r, s_r \mid \Lambda) A_i(s_r, S_r)}{\sum_{s_r} p(X_r, s_r \mid \Lambda)}
\]

(19)
Discussions (single-token level)

- At the single-token level, the MMI criterion uses a model-based expected utility of (6) while the MCE criterion uses a classifier-dependent smoothed empirical utility defined by (9), (13), and (15). Likewise, the MPE/MWE criterion also uses a model-based expected utility, but the utility is computed at the sub-string level; e.g., at the phone or word level. We note that for mathematical tractability reasons, in this paper, a specific misclassification measure (12) is used for MCE. As a consequence, the smoothed empirical utility (15) takes the same form as (6) (though they are derived from different motivations). This can be directly seen by substituting (14) to (15).
\[
\frac{p(X_r, S_r | \Lambda)}{\sum_{s_r} p(X_r, s_r | \Lambda)} = 1 - \sum_{s_r \neq S_r} P(s_r | X_r, \Lambda) = 1 - \sum_{s_r} \left(1 - \delta(s_r, S_r)\right) P(s_r | X_r, \Lambda). \tag{6}
\]

\[
d_r(X_r, \Lambda) = -g_{S_r}(X_r, \Lambda) + G_{S_r}(X_r, \Lambda) \tag{9}
\]

\[
l_r(d_r(X_r, \Lambda)) = \frac{1}{1 + e^{-\alpha d_r(X_r, \Lambda)}} \tag{13}
\]

\[
\begin{aligned}
g_{S_r}(X_r, \Lambda) &= \log p^n(X_r, S_r | \Lambda) \\
G_{S_r}(X_r, \Lambda) &= \log \sum_{i=1}^{N} p^n(X_r, s_{r,i} | \Lambda) \tag{12}
\end{aligned}
\]

\[
u_r(d_r(X_r, \Lambda)) = 1 - l_r(d_r(X_r, \Lambda)). \tag{15}
\]
Discussions (multiple-token level)

- At the multiple-token level, by comparing (5), (17), (18), and (19), it is clear that MMI training maximizes a product of model-based expected utilities of training tokens, while MCE training maximizes a summation of smoothed empirical utilities over all training tokens and MPE/MWE training maximizes a summation of model-based expected utilities (computed on sub-string units). The difference between the product and the summation forms of the utilities differentiates MMI from MCE/MPE/MWE. This difference causes difficulties in extending the original GT/EBW formulas proposed for MMI to other criteria.
\[O_{MCE}(\Lambda) = R(1 - L_{MCE}(\Lambda)) = \sum_{r=1}^{R} u_r(d_r(X_r, \Lambda)) = \sum_{r=1}^{R} \frac{p(X_r, S_r | \Lambda)}{\sum_{s_r} p(X_r, s_r | \Lambda)} \] (17)

\[O_{MPE}(\Lambda) = \frac{\sum_{r=1}^{R} \sum_{s_r} p(X_r, s_r | \Lambda) A(s_r, S_r)}{\sum_{s_r} p(X_r, s_r | \Lambda)} \] (18)

\[O_{MVE}(\Lambda) = \sum_{r=1}^{R} \sum_{s_r} p(X_r, s_r | \Lambda) A_2(s_r, S_r) \frac{p(X_r, s_r | \Lambda)}{\sum_{s_r} p(X_r, s_r | \Lambda)} \] (19)

\[\tilde{O}_{MFI}(\Lambda) = \exp\left[O_{MFI}(\Lambda) \right] = \prod_{r=1}^{R} \frac{p(X_r, S_r | \Lambda)}{\sum_{s_r} p(X_r, s_r | \Lambda)} \] (5)
The Common Rational-Function form for Objective functions of MMI, MCE, and MPE/MWE

- we show that the objective functions in discriminative learning based on the MMI, MCE and MPE/MWE criteria can be mapped to a canonical rational-function form where the denominator function is constrained to be positive valued.

- This canonical rational-function form has the benefit of offering insights into the relationships among MMI, MCE, and MPE/MWE based classifiers and it facilitates the development of a unified classifier parameter optimization framework for applying MMI, MCE, and MPE/MWE objective functions in sequential pattern recognition tasks.
Rational-Function Form for the Objective Function of MMI

- Based on (5), the canonical rational-function form for MMI objective function can be constructed as:

\[
\tilde{O}_{\text{MMI}}(\Lambda) = \frac{p(X_1 \ldots X_R, S_1 \ldots S_R | \Lambda)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)} = \frac{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) C_{\text{MMI}}(s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)}
\]

where

\[
C_{\text{MMI}}(s_1 \ldots s_R) = \prod_{r=1}^{R} \delta(s_r, S_r)
\]

- is a quantity that depends only on the sentence sequence \(s_1, \ldots, s_R \), and \(\delta(s_r, S_r) \) is the Kronecker delta function, i.e.,

\[
\delta(s_r, S_r) = \begin{cases}
1 & \text{if } s_r = S_r \\
0 & \text{otherwise}
\end{cases}
\]

In (20), the first step uses the common assumption that different training tokens are independent of each other.
Rational-Function Form for the Objective Function of MCE(1/3)

• Unlike the MMI case where the rational-function form can be obtained through a simple exponential transformation, the objective function of MCE as given in (17) is a sum of rational functions rather than a rational function in itself (i.e., a ratio of two polynomials)

• The gradient descent based sequential learning using GPD has two main drawbacks:
 1. it is a sample-by-sample learning algorithm. Algorithmically, it is difficult for GPD to parallelize the parameter learning process, which is critical for large scale tasks.
 2. it is not a monotone learning algorithm and it does not have a monotone learning function to determine the stopping point of the discriminative learning.

• The derivation of the rational-function form for the objective function of MCE is as follows:
\[O_{MCE}(\Lambda) = R(1 - L_{MCE}(\Lambda)) = \sum_{r=1}^{R} u_r(d_r(X_r, \Lambda)) = \sum_{r=1}^{R} \frac{p(X_r, S_r | \Lambda)}{\sum_{s_r} p(X_r, S_r | \Lambda)} \]

(17)
Rational-Function Form for the Objective Function of MCE(2/3)

\[O_{MCE}(\Lambda) = \frac{\sum_{r=1}^{R} \sum_{s_1} p(X_r, s_r | \Lambda) \delta(s_r, S_r)}{\sum_{s_1} p(X_1, s_1 | \Lambda)} + \frac{\sum_{r=2}^{R} p(X_r, s_r | \Lambda) \delta(s_r, S_r)}{\sum_{s_2} p(X_2, s_2 | \Lambda)} + \ldots + \frac{\sum_{r=R}^{R} p(X_R, s_R | \Lambda) \delta(s_R, S_R)}{\sum_{s_R} p(X_R, s_R | \Lambda)} \]

\[= \frac{\sum_{s_1} p(X_1, s_1 | \Lambda)p(X_2, s_2 | \Lambda)[\delta(s_1, S_1) + \delta(s_2, S_2)]}{\sum_{s_1} p(X_1, s_1 | \Lambda)p(X_2, s_2 | \Lambda)} + O_3 + \ldots + O_R \]

\[= \frac{\sum_{s_1} p(X_1, s_1 | \Lambda)[C_{MCE}(s_1s_2)]}{\sum_{s_2} p(X_1, s_1 | \Lambda)} + O_3 + \ldots + O_R \]

\[= \frac{\sum_{s_1} p(X_1, s_1, s_2, s_3 | \Lambda)[C_{MCE}(s_1s_2s_3)]}{\sum_{s_1} p(X_1, s_1, s_2, s_3 | \Lambda)} + O_4 + \ldots + O_R \]

\[= \frac{\sum_{s_1} p(X_1, \ldots, X_R, s_1 \ldots s_R | \Lambda) C_{MCE}(s_1 \ldots s_R)}{\sum_{s_1} p(X_1, \ldots, X_R, s_1 \ldots s_R | \Lambda)} \]

(23)
Rational-Function Form for the Objective Function of MCE(3/3)

- Where

\[
C_{MCE}(s_1...s_R) = \sum_{r=1}^{R} \delta(s_r, S_r) . C_{MCE}(s_1, ..., s_R)
\]

\(C_{MCE}(s_1...s_R)\) can be interpreted as the string accuracy count for \(s_1, ..., s_R\), which takes an integer value between zero and \(R\) as the number of correct strings in \(s_1, ..., s_R\).

- As it will be further elaborated, the rational-function form (23) for the MCE objective function will play a pivotal role in our study of MCE-based discriminative learning.
Rational-Function Form for the Objective Function of MPE/MWE(1/2)

- Similar to MCE, the MPE/MWE objective function is also a sum of multiple (instead of a single) rational functions, and hence it is difficult to derive GT formulas

- An important finding is that the same method used to derive the rational-function form (23) for the MCE objective function can be applied directly to derive the rational-function form for MPE/MWE objective functions as defined in (18) and (19)
Rational-Function Form for the Objective Function of MPE/MWE(2/2)

\[O_{MWE}(\Lambda) = \sum_{s_1 \ldots s_R} \frac{p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) C_{MWE}(s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)} \]

where \(C_{MWE}(s_1 \ldots s_R) = \sum_{r=1}^{R} A_j(s_r, S_r) \).

\[O_{MPE}(\Lambda) = \sum_{s_1 \ldots s_R} \frac{p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) C_{MPE}(s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)} \]

where \(C_{MPE}(s_1 \ldots s_R) = \sum_{r=1}^{R} A(s_r, S_r) \), and
• The main result in this section is that all three discriminative learning objective functions, MMI, MCE, and MPE/MWE, can be formulated in a unified canonical rational-function form as follows:

\[
O(\Lambda) = \frac{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R \mid \Lambda) \cdot C_{DT}(s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R \mid \Lambda)}
\]

(26)

where the summation over \(s=s1 \ldots sR \) in (26) denotes all possible labeled sequences (both correct and incorrect ones) for all \(R \) training tokens.
Comments and Discussions

<table>
<thead>
<tr>
<th>Objective Functions</th>
<th>$C_{DT}(s_r)$</th>
<th>$C_{DT}(s_1 \ldots s_R)$</th>
<th>Label Sequence Set Used in DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCE (N-best)</td>
<td>$\delta(s_r, S_r)$</td>
<td>$\sum_{r=1}^{R} C_{DT}(s_r)$</td>
<td>${S_r, s_{r,1}, \ldots, s_{r,N}}$</td>
</tr>
<tr>
<td>MCE (one-best)</td>
<td>$\delta(s_r, S_r)$</td>
<td>$\sum_{r=1}^{R} C_{DT}(s_r)$</td>
<td>${S_r, s_{r,1}}$</td>
</tr>
<tr>
<td>MPE</td>
<td>$A(s_r, S_r)$</td>
<td>$\sum_{r=1}^{R} C_{DT}(s_r)$</td>
<td>all possible label sequences</td>
</tr>
<tr>
<td>MWE</td>
<td>$A_l(s_r, S_r)$</td>
<td>$\sum_{r=1}^{R} C_{DT}(s_r)$</td>
<td>all possible label sequences</td>
</tr>
<tr>
<td>MMI</td>
<td>$\delta(s_r, S_r)$</td>
<td>$\prod_{r=1}^{R} C_{DT}(s_r)$</td>
<td>all possible label sequences</td>
</tr>
</tbody>
</table>

Table 1: $C_{DT}(s_1 \ldots s_R)$ in the unified rational-function form for MMI, MCE, and MPE/MWE objective functions. The set of “competing token candidates” distinguishes N-best and one-best versions of the MCE. Note that the overall $C_{DT}(s_1 \ldots s_R)$ is constructed from its constituents $C_{DT}(s_r)$’s in individual string tokens by either summation (for MCE, MPE/MWE) or product (for MMI).
Optimizing Rational Functions By Growth Transformation(1/2)

- GT-based parameter optimization refers to a family of batch-mode, iterative optimization schemes that “grow” the value of the objective function upon each iteration.

- the new set of model parameter Λ is estimated from the current model parameter set Λ' through a transformation $\Lambda = T(\Lambda')$ with the property that the target objective function “grows” in its value $O(\Lambda) > O(\Lambda')$ unless $\Lambda = \Lambda'$.
The goal of GT based parameter optimization is to find an optimal Λ that maximizes the objective function $O(\Lambda)$ which is a rational function of the following form:

$$O(\Lambda) = \frac{G(\Lambda)}{H(\Lambda)}$$

For example, $O(\Lambda)$ can be one of the rational functions of (20), (23), (24) and (25) for the MMI,MCE, and MPE/MWE objective functions, respectively, or the general rational-function (26). In the general case of (26), we have

$$G(\Lambda) = \sum_{s} p(X, s | \Lambda) C(s), \text{ and } H(\Lambda) = \sum_{s} p(X, s | \Lambda)$$ \hspace{1cm} (28)

where we use short-hand notation $s=s1 \ldots sR$ to denote the labeled sequences of all R training tokens/sentences, and $X=X1 \ldots XR$, to denote the observation data sequences for all R training tokens.
$$\tilde{O}_{MM} (\Lambda) = \frac{p(X_1 \ldots X_R, S_1 \ldots S_R | \Lambda)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)} = \frac{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) \ C_{MPE} (s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)}$$

(20)

$$= \frac{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) \ C_{MCE} (s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)}$$

(23)

$$O_{MPE} (\Lambda) = \frac{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) \ C_{MPE} (s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)}$$

(24)

where \(C_{MPE} (s_1 \ldots s_R) = \sum_{r=1}^{R} A(s_r, S_r) \), and

$$O_{MWE} (\Lambda) = \frac{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda) \ C_{MWE} (s_1 \ldots s_R)}{\sum_{s_1 \ldots s_R} p(X_1 \ldots X_R, s_1 \ldots s_R | \Lambda)}$$

(25)

where \(C_{MWE} (s_1 \ldots s_R) = \sum_{r=1}^{R} A_l(s_r, S_r) \).
Primary Auxiliary Function

- The GT-based optimization algorithm will constructs an auxiliary function of the following form:

\[F(\Lambda; \Lambda') = G(\Lambda) - O(\Lambda')H(\Lambda) + D \]

where \(D \) is a quantity independent of the parameter set

\(\Lambda \) is the model parameter set to be estimated

by applying GT to another model parameter set \(\Lambda' \)

Substituting \(\Lambda = \Lambda' \) into , we have

\[F(\Lambda'; \Lambda') = G(\Lambda') - O(\Lambda')H(\Lambda') + D = D \]

Hence,

\[F(\Lambda; \Lambda') - F(\Lambda'; \Lambda') = F(\Lambda; \Lambda') - D = G(\Lambda) - O(\Lambda')H(\Lambda) \]

\[= H(\Lambda)\left(\frac{G(\Lambda)}{H(\Lambda)} - O(\Lambda')\right) = H(\Lambda)(O(\Lambda) - O(\Lambda')) \]
Second Auxiliary Function

May still be too difficult to optimize directly, and a second auxiliary function can be constructed

\[V(\Lambda; \Lambda') = \sum_{s} \sum_{q} \sum_{\chi} f(\chi, q, s, \Lambda') \log f(\chi, q, s, \Lambda) \]

\[F(\Lambda; \Lambda') = \sum_{s} \sum_{q} \sum_{\chi} f(\chi, q, s, \Lambda) \]