A Study of Irrelevant Variability Normalization Based Training and Unsupervised Online Adaptation for LVCSR

Guangchuan Shi^{1,2}, Yu Shi¹, Qiang Huo¹

¹Microsoft Research Asia, Beijing, China ²MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems ²Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

sgc1984@sjtu.edu.cn, yushi@microsoft.com, qianghuo@microsoft.com

Introduction

 Irrelevant variability normalization (IVN) has been proposed for acoustic modeling, training and adaptation

Training

Testing

Approach

• Feature Transformation Function

$$x_{t} = F(y_{t}; \Theta) = A^{(e_{t})}y_{t} + b^{(l_{t})}$$

- y_t is the t-th original D-dimensional feature vector
- \circ x_t is the transformed feature vector
- $\circ A^{(e_t)}$ is the $D \times D$ nonsingular transformation matrix
- $b^{(l_t)}$ is the *D*-dimensional bias vector
- \circ e_{t} and l_{t} are the labels informed by "Acoustic Sniffing" module

$$\Theta = \{A^{(e)}, b^{(l)} \mid e = 1, 2, \dots, E; l = 1, 2, \dots, L\}$$

- Moving-Window Approach to Acoustic Sniffing
 - In training stage, given the feature vector sequences of training data, for the t-th frame of raw feature vector y_t , we first calculate 6 new D-dimensional feature vectors

$$\begin{array}{lll} \overline{y}_{t-3} & = & \frac{1}{4}(y_{t-9} + y_{t-8} + y_{t-7} + y_{t-6}) \\ \\ \overline{y}_{t-2} & = & \frac{1}{3}(y_{t-5} + y_{t-4} + y_{t-3}) \\ \\ \overline{y}_{t-1} & = & \frac{1}{2}(y_{t-2} + y_{t-1}) \\ \\ \overline{y}_{t+1} & = & \frac{1}{2}(y_{t+1} + y_{t+2}) & \Rightarrow \text{concatenate into a single super vector } \mathcal{Z}_t \\ \\ \overline{y}_{t+2} & = & \frac{1}{3}(y_{t+3} + y_{t+4} + y_{t+5}) \\ \\ \overline{y}_{t+3} & = & \frac{1}{4}(y_{t+6} + y_{t+7} + y_{t+8} + y_{t+9}) \end{array}$$

• Given the new set of training feature vectors $\{z_t\}$, a Gaussian mixture model (GMM) with K components is trained

- Then, two hierarchical trees can be constructed by using a divisive Gaussian clustering method with E and L leaf nodes
 - to form two Gaussian codebooks

$$\{N(z; \xi_e^{(A)}, R_e^{(A)}) | e = 1, 2, \dots, E\}$$

$$\{N(z; \xi_l^{(b)}, R_l^{(b)}) | l = 1, 2, \dots, L\}$$

 In both IVN-based training and recognition stage, a label can be assigned for transformation matrix and bias vector

$$e_{t} = \arg\max_{e} N(z; \xi_{e}^{(A)}, R_{e}^{(A)})$$

$$l_{t} = \arg\max_{l} N(z; \xi_{l}^{(b)}, R_{l}^{(b)})$$

- IVN-based ML Training
 - Assume each basic speech unit is modeled by a Gaussian mixture continuous density hidden Markov models (CDHMM) whose parameters are denoted as

$$\lambda = \left\{ \pi_{s}, a_{ss'}, c_{sm}, \mu_{sm}, \Sigma_{sm} \right\}$$

- Let $\Lambda = \{\lambda\}$ denote the set of CDHMM parameters and $\mathcal{Y} = \{Y_i | i=1,2,\cdots I\}$ the set of training data
- $^{\circ}$ By using the acoustic sniffing technique, two sets of frame labels for transformation matrix and bias vector $_{\mathcal{E}}$ and $_{\mathcal{L}}$ derived from $_{\mathcal{Y}_{\cdot}}$

• The IVN-based ML training is to maximize, by adjusting feature transform parameters

and HMM parameters

the following likelihood function

$$F(\Theta, \Lambda) = \prod_{i=1}^{I} p(Y_i | \Theta, \Lambda, \mathcal{E}, \mathcal{L})$$

- They used method of alternating variables to maximize the above objective function
- Step 1: Initialization
 - The set of HMM parameters is initialized as the one trained using a traditional ML training approach
 - The feature transformation matrices are initialized as identity matrices and the bias vectors are initialized as zero vectors

- Step 2: Estimate Feature Transformation Parameters ⊕ by Fixing HMM Parameters ∧
 - Given the fixed HMM parameters $\overline{\Lambda}$, the likelihood function $Figl(\Theta,\overline{\Lambda}igr)$ can be increased by running several EM iterations to re-estimate Θ

$$Q(\Theta, \overline{\Theta}) = \sum_{t.s.m} \gamma_{sm}(t) \log p_{sm}(y_t | \Theta, \overline{\Lambda})$$
$$p_{sm}(y_t | \Theta, \overline{\Lambda}) = \mathcal{N}(\mathcal{F}(y_t; \Theta); \overline{\mu}_{sm}, \overline{\Sigma}_{sm}) |\det(A^{(e_t)})|$$

- Step 3: Estimate HMM Parameters Λ by Fixing Feature Transformation Parameters Θ
- Step 4: Repeat Step 2 and Step 3 N_{C} times

- Unsupervised Online Adaptation
 - **Step 1:** Transform $F(y_t; \Theta)$ with pretrained transform parameters. Do first-pass recognition by using generic HMMs
 - **Step 2:** Given the recognized transcription the transform parameters are re-estimated.
 - Step 3: Transform Y with the updated parameters $\hat{\Theta}$. Do recognition by using generic HMMs
 - Step 4: Repeat Step 2 and Step 3 until a pre-specified criterion is satisfied

Experiments and Results

- Experimental Setup
 - The speech corpus is Switchboard-1 corpus
 - 4870 sides of conversations (about 300 hours speech) from 520 speakers as training data
 - 40 sides of Switchboard-1 conversations (about 2 hours speech) from the 2000 Hub5 evaluation as testing data
 - For feature extraction in front-end, they used 39 PLP_E_D_A.
 Conversation-side based mean and variance normalization was applied in both training and recognition stages
 - For acoustic modeling, they used phonetic decision-tree based tied-state triphone CDHMMs with 9302 states and 40 Gaussian components per state
 - The recognition vocabulary contains 22641 unique words

Experiments and Results

- In moving-window based acoustic sniffing, the setting of relevant control parameters is as follows: K = 1024, E = 8, L = 8.
- Learning Behavior of IVN-based ML Training

 The WER is reduced from 30.2% for baseline system to 29.3% after 5 main cyles of IVN-based training

Experiments and Results

• Effects of Unsupervised Online Adaptation

Table 1: Comparison of different approaches.

Method	WER (%)	Relative (%)
Baseline	30.2	N/A
Baseline + MLLR	28.4	5.96
CMLLR-based AT	29.5	2.32
CMLLR-based AT + OLA	27.5	8.94
IVN-based Training	29.3	2.98
IVN + OLA	27.2	9.93

- After two cycles of recognition and OLA, the WER is reduced from 29.3% to 27.2%
- Apparently IVN-based approach achieves the best performance

Conclusion and Discussions

- The IVN-based approach has at least the following advantages
 - The open mechanism of acoustic sniffing offers new opportunities and flexibility for innovation
 - Because IVN-based approach can be implemented as a feature transformation approach, no change of speech decoder has to be made
- Ongoing and future works for IVN-based framework include
 - explore different acoustic sniffing techniques
 - investigate the effectiveness of using discriminative training for both transforms and generic HMM parameters for LVCSR
 - investigate the effectiveness of a hybrid approach for LVCSR

