Artificial Intelligence

Berlin Chen 2003

Course Contents

- The theoretical and practical issues for all displineies Artificial Intelligence (AI) will be considered
 - Al is interdisciplinary!
- Foundational Topics to Covered
 - Concepts of Agents
 - Problem-Solving by Search Algorithms
 - Logics
 - Knowledge Representation and Reasoning
 - Planning
 - Al Programming

Textbook and References

Textbook:

 S Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, 2003

http://aima.cs.berkeley.edu/

References:

- I. Bratko, "Prolog Programming for Artificial Intelligence,"
 Addison-Wesley, 2001
- P. R. Harrison, "Common Lisp and Artificial Intelligence,"
 Prentice Hall, 1990
- Franz Inc., "Common Lisp: The Reference," Addison-Wesley,
 1988
- T.M. Mitchell, "Machine Learning," McGraw-Hill, 1997

Grading

- Midterm or Final: 30%
- Homework: 25%
- Project/Presentation: 30%
- Attendance/Other: 15%

Introduction

Berlin Chen 2003

Reference:

1. S. Russell and P Norvig. Artificial Intelligence: A Modern Approach, Chapter 1

What is Al?

- "[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning..." (Bellman, 1978)
- "The exciting new effort to make computer think ...
 machines with mind, in the full and literal sense."
 (Haugeland, 1985)
- "The study of mental faculties through the use of computational models" (Charniak and McDermott, 1985)
- "The study of how to make computers do things at which, at the moment, people do better." (Rich and Knight, 1991)

What is Al?

- The study of the computations that it possible to perceive, reason, and act." (Winston, 1992)
- "Al...is concerned with intelligent behavior in artifacts." (Nilsson, 1998)

AI systemizes and automates intellectual tasks as well as any sphere of human intellectual activities.

- Duplicate human facilities like creativity, self-improvement, and language use
- Function autonomously in complex and changing environments

AI still has openings for several full-time Einsteins!

Categorization of Al

	fidelity	rationality
Thought/ reasoning	Systems that think like humans	Systems that think rationally
behavior	Systems that act like humans	Systems that act rationally

- Physical simulation of a person is unnecessary for intelligence?
 - Humans are not necessarily "rational"

Turing test: proposed by Alan Turing, 1950

- The test is for a program to have a conversation (via online typed messages) with an interrogator for 5 minutes
- The interrogator has to guess if the conversation is with a machine or a person
- The program passes the test if it fools the interrogator 30% of the time

Turing's Conjecture

 At the end of 20 century a machine with 10 gigabytes of memory would have 30% chance of fooling a human interrogator after 5 minutes of questions

Problems with Turing test

- The interrogator may be incompetent
- The interrogator is too lazy to ask the questions
- The human at the other hand may try to trick the interrogator
- The program doesn't have to think like a human

–

- The computer would possess the following capabilities to pass the Turing test
 - Natural language/Speech processing
 - Knowledge representation
 - Automated reasoning
 - Machine learning/adaptation
 - Computer visionRobotics

Six disciplines compose most of AI

Imitate humans or learn something from humans?

- However, scientists devoted much effort to studying the underlying principles of intelligence than passing Turing test!
 - E.g. aircrafts vs. birds
 - E.g. Boats/submarines vs. fishes/dolphins/whales
 - E.g. perception in speech

Thinking humanly: Cognitive Modeling

- Get inside the actual workings of human minds through
 - Introspection
 - Psychological experiments

find the theory of the mind or trace the steps of humans' reasoning

- Once having a sufficiently precise theory of the mind, we can express the theory as a computer program!
- Cognitive science interdisciplinary
 - Computer models from AI
 - Experimental techniques from psychology

Thinking rationally: Laws of Thought

Correct inference

- "Socrates is a man; all men are mortal; therefore, Socrates is mortal"
- Correct premises yield correct conclusions

Formal logic

- Define a precise notion for statements all things and the relations among them
 - Knowledge encoded in logic forms
- Main considerations
 - Not all things can be formally repressed in logic forms
 - Computation complexity is high

Acting rationally: Rational Agents

- An agent is just something that perceives and acts
 - E.g., computer agents vs. computer programs
 - Autonomously, adaptively, goal-directly
- Acting rationally: doing the right thing
 - The right thing: that which is expected to maximize the goal achievement, given the available information
 - Don't necessarily involving thinking/inference
- Rationality ←→Inference
- The study of AI as rational-agent design

- Philosophy: (428 B.C. present)
 - Logic, methods of reasoning
 - A set of rules that can describe the formal/rational parts of mind
 - Mind as a physical system / computation process
 - Knowledge acquired from experiences and encoded in mind, and used to choose right actions
 - Learning, language, rationality

- Mathematics (C. 800 present)
 - Formal representation and proof
 - Tools to manipulate logical/probabilistic statementsGroundwork for computation and algorithms

Three main contributions:

- (decidability of) logic, (tractability of) computation, and probability (for uncertain reasoning)

• Economics (1776 - present)

Formal theory for the problem of making decisions

- Utility: the preferred outcomes
- Decision theory
- Game theory

Maximize the utility
Right actions under competition

- Operations research
 - Payoffs from actions may be far in the future

• Neuroscience (1861- present)

Brains cause minds

- The mapping between areas of the brain and the parts of body they control or from which they receive sensory input

Psychology (1879- present)

Brains as information-processing devices

- Knowledge-based agent
 - Stimulus translated into an internal representation
 - Cognitive process derive new international representations from it
 - These representations are in turn retranslated back into action
- Computer engineer (1940- present)

Artifacts for implementing AI ideas/computation

- (Software) programming languages
- The increase in speed and memory

Control theory (1948- present)

Maximizing an objective function over time

Minimize the different between current and goal states

• Linguistics (1957- present)

How does language relate to thought?

- Languages fit information processing model
- Understanding languages requires an understanding of subject matter and context

History of Al

- 1943-55 Gestation of Artificial Intelligence
 McCulloch & Pitt: Boolean circuit model of neurons
 Turing's "Computing Machinery and Intelligence"
- 1956 The birth of Artificial Intelligence
 Dartmouth meeting: "Artificial Intelligence" adopted (McCarthy, Minsky, Shannon, ...)
- 1966-85 Neural network research almost disappears
 No efficient Training Algorithms for Layered networks
- 1969-79 Knowledge-based systems
- 1980-88 Expert system industry booms
- A million dollars to billions of dollars
- 1986- Neural networks return to popularity
- 1988-93 Expert system industry busts: "Al winter"
- 1995- Agents everywhere ...

Advances in Al

- Hidden Markov Models
- Neural Networks
- Bayesian Networks
- Search Algorithms like genetic algorithms
- Machine Learning
- Data Mining

• MIT Microworlds: "analogy problems"

• MIT Microworlds: "blocks world"

 ELIZA: A simple natural-language understanding program (1966)

User1: Men are all alike.

ELIZA1: IN WHAT WAY

User2: They're always bugging us about something or other.

ELIZA2: CAN YOU THINK OF A SPECIAL EXAMPLE

User3: Well, my boyfriend made me come here.

ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE

User4: He says I'm depressed much of the time.

ELIZA4: I AM SORRY TO HERE YOU ARE DEPRESSED

s/.* all .*/IN WHAT WAY/
s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/
s/.* I'm (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

IBM Deep Blue

- CMU ALVIN project, 1989 (Autonomous Land Vehicle In a Neural Network)
 - 1200 computer-generated images as training examples

30x32 Video

Input Retina

- Half-hour training
- The salient features have been directly acquired by the network itself

An additional information from previous image indicating the darkness or lightness of the road

scene information

- Sony AIBO robot
 - Available on June 1, 1999
 - Weight: 1.6 KG
 - Adaptive learning and growth capabilities
 - Simulate emotion such as happiness and anger

- Honda ASIMO (Advanced Step in Innovate MObility)
 - Born on 31 October, 2001
 - Height: 120 CM, Weight: 52 KG

MIT Oxygen Project: Spoken Interface

2003 AI Forum

• Date: 13-14 September, 2003

Place: Kaohsiung

• Webpage:

http://kids.csie.isu.edu.tw/AI_Forum2003/

第一天 九月十三日(星期六)

第二天 九月十四日(星期日)

時間	人員		詩思
11:30-13:00	報到註冊		
13:00-13:30		傅勝利校長 學會理事長 項潔教授	開幕發詞
13:30-15:10	主持人	許聞庭博士 中研院資訊所	Ontology and its applications
専題演講	演講者	蔣荣先教授 成大資工系	智慧型資訊擷取在生物資訊上之應用
		蘇豐文教授 潘大資應所	利用分享式語意知識回答歷史人事地時物之問題
15:10-15:30	Coffee break		
	主持人	楊維邦教授 交大資料系	智慧型數位內容組織與採勘
15:30-17:20	演講者	葉鎖源、楊維邦教授 交大資科系	多語言複合式文件自動摘要
車顕演議		柯皓仁教授 交大圖書館	以詮釋資料爲基礎之智慧型數位圖書館典藏及服務檢索系統
子必供研		黄明居教授 玄奘圖資系	個人化與群體化數位圖書館
		徐典裕教授 科博館	數位內容知識庫概念模式化及建置
17:20-17:50	會員大會		
17:50-19:30	晚宴		
19:30-20:30	理監事會議		

時間		人員	詩題
	主持人	李錫智教授 中山電機系	知識探勘技術
		吳志宏教授 樹徳資管系	Data Preprocessing for Data Mining A Perspective from ILP
08:40-10:20		林文揚教授 義守資管系	Data Warehousing in Heterogeneous World: Problems and Challenge
専題演講	演講者	李錫智教授 中山電機系	Spatial Data Mining Techniques and Applications
		競炳全教授 義守資工系	Data Mining from Multimedia Data Sources
		洪宗貝教授 高大電機系	Integration of Mined Knowledge
10:20-10:40	Coffee Break		
10:40-12:10	主持人	郭耀煌教授 成大資工系	人工智慧之應用發展及產學合作趨勢
10.10 12.10	簡 爾 處長 資訊工業策進會南區資訊處		
產學座談	引言人	引言人	
		曾新穆 教授 成大資工系	
12:10-	午餐&賦歸		