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Linear Predictive Coefficients (LPC)

* An all-pole filter with a sufficient number of poles is a
good approximation to model the vocal tract (filter) for
speech signals
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Source-filter model for voiced and unvoiced speech.

— It predicts the current sample as a linear combination of its
several past samples

 Linear predictive coding, LPC analysis, auto-regressive
modeling



Short-Term Analysis: Algebra Approach

« Estimate the corresponding LPC coefficients as those
that minimize the total short-term prediction error
(minimum mean squared error)

E = Zenz1 [n]: Z(xm[n]— X, [n])2 ,0<n<N-1
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" This property will be used later on!



Short-Term Analysis: Algebra Approach
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. . To be used in next page !
Define correlation coefficients :
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Short-Term Analysis: Algebra Approach

« The minimum error for the optimal,a,, 1< j<p
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Short-Term Analysis: Geometric Approach

* Vector Representations of Error and Speech Signals

X [n] Zax [n k]+e [n] 0<n<N-1

k=1
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" The prediction error vector must be
X, orthogonal to the past vectors




Short-Term Analysis: Autocorrelation Method

* x [n] isidentically zero outside 0 <n <N-1
* The mean-squared error is calculated within n=0~N-1+p

x[n + mL]w[n], 0<n<<N-1 L: Frame Period , the length
X [n] : of time between successive
0, otherwise frames

------- rl [ 1] l 1111 1 I . x[n]
| / l /|
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0 * mL mLD shift
----- er [ 1] l L1111 ‘ %, [n]= x[n+mL ]
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l Framing/Windowing
x,[n]= %, [n]wln]




Short-Term Analysis: Autocorrelation Method

 The mean-squared error will be:
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Short-Term Analysis: Autocorrelation Method

* Alternatively,
— Where ¢, i, j]= R|i - j] is the autocorrelation function of x,, [»]

— And R [k]:N_gl_kxm[n]xm[nJrk]
 Therefore:

R, [k]=R,[-k] Why?
>a,,li.j]=¢4,[.0] . vi<i<p
j=1
= Sa,R,[k|]=R,[k] . v1<i<p
j=1 '
A Toeplitz Matrix: " R [0] R,11 .. R,p-1]a | [R,]
symmetric and all elements | p 1] R[] .. RI[p-2]|a R [2]

of the diagonal are equal




Short-Term Analysis: Autocorrelation Method

 Levinson-Durbin Recursion
1.Initialization

E©0)=R,[0]
2. lteration. For i=1...,p do the following recursion
R, [i]-Sa,G-1R,[i- /]
kG- —
E (l — 1)

) — : A new, higher order coefficient
4 (l ) k (l ) is produced at each iteration 7

aj(i)zaj(i—l)—k(i)ai_j(i—l), for 1< j<i-1
E@)=0-[k@F)EG-1) where  -1<k(i)<1

3. Final Solution:

ajzaj(p)for 1< j<p
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Short-Term Analysis: Covariance Method

x, [n] is not identically zero outside 0 <n < N-1
— Window function is not applied

 The mean-squared error is calculated within n=0~N-1

_______ ' [ l l [ ]: x[n + mL]
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Short-Term Analysis: Covariance Method
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LPC Spectra

« LPC spectrum matches more closely the peaks than
the vaIIeyS Parseval's theorem
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Figure 6.20 LPC spectrum of the /ah/ phoneme in the word lives of Figure 6.3. Used here are a

30-ms Hamming window and the autocorrelation method with p = 14. The short-time spectrum
is also shown.

Figure 6.21 LPC spectra of Figure 6.20 for various values of the predictor order p.

— Because the regions where ‘Xm (ej“’] > H(e"‘”} contribute

more to the error than those where ‘H (ej“’} > ‘Xm (eij
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LPC Spectra

« LPC provides estimate of a gross shape of the
short-term spectrum
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Figure 5.13 Linear prediction analysis of steady vowel sound with different model orders using the
autocorrelation method: (a) order 6; (b) order 14; (c) order 24; (d) order 128. In each case, the all-pole
spectral envelope (thick) is superimposed on the harmonic spectrum (thin), and the gain is computed
according to Equation (5.30).
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LPC Prediction Errors

Signal Prediction Error
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-300 Figure 6.23 Variation of the normalized prediction error with the number of prediction coeffi-
cients p for the voiced segment of Figure 6.3 and the unvoiced speech of Figure 6.5. The auto-

correlation method was used with a 30 ms Hamming window, and a sampling rate of 8 kHz.
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Figure 6.22 LPC prediction error signals for several vowels.
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MFCC vs. LPC Cepstrum Coefficients

 MFCC outperforms LPC Cepstrum coefficients

— Perceptually motivated mel-scale representation indeed helps
recognition

Table 9.2 Relative error reduction with different features. The reduction is relative to that of
the preceding row.

Feature Set Relative Error Reduction
13th-order LPC cepstrum coefficients Baseline
13th-order MFCC _ +10%
16th-order MFCC . +0%
+1st- and 2nd-order dynamic features +20%
+3rd-order dynamic features +0%

« Higher-order MFCC does not further reduce the error rate in
comparison with the 13-order MFCC

* Another perceptually motivated features such as first- and
second-order delta features can significantly reduce the
recognition errors
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Description of Project-2 .., 05

 Try to implement the short-term linear prediction coding
(LPC) for speech signals

* You should follow the following instructions:

1.

Using the autocorrelation method with Levinson-Durbin
Recursion and Rectangular/Hamming windowing

. Analyzing the vowel (or FINAL) portions of speech signal with

different model orders (different P, e.g. P=6, 14, 24 and 128)

. Plotting the LPC spectra as well as the original speech spectrum

. Using the speech wave file, bk6 _1.wav (no header, PCM 16KHz

raw data), as the exemplar
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Description of Project-2 .., 05

Hints:

1. When the LPC coefficients a; are derived, you can construct
impulse response signal h[n], 0<n < N-1 (N: frame size) by:

hin]l= >a, -h[n—j]+ §[n]
J=
or
1, it »n=0
hln] =

2. The prediction Error E can be expressed by the autocorrelation
function:

E = R?n [0]_ j%laf ] Rm [j]
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Description of Project-2 .., 05

3. The MATLab example code:

x=[184.6400 184.1251 . ... ... 197.7890 -26.8000 ]; % original signal, dimension: frame size
y=[1.0000 2.0105 ....... 0.0738 0.0565 ]; % filter's impulse response h[n], dimension: frame size
gain=valG; % valG: the prediction Error E
X=fft(x,512); % fast Fourier Transform, so the frame size < 512
Y=fft(y,512); % fast Fourier Transform
X(1)=[]; % remove the X(1), the DC
Y(1)=[]; % remove the Y(1), the DC
M=512;
powerX=abs(X(1:M/2)).22; % the power spectrum of X
logPX=10%log(powerX); % the power spectrum of X in dB
powerY=abs(Y(1:M/2)).*2; % the power spectrum of Y
logPY=10%log(powerY)+10*log(gain); % the power spectrum of Y in dB
% plus the gain (Error) in dB
nyquist=8000; % maximal frequency index
freq=(1:M/2)/(M/2)*nyquist; % an array store the frequency indices
figure(1);

plot(freq,logPX,'b',freq,logPY,'r"); % plot the result,
% b: blue line for the power spectrum of the original signal
% r: red line for the power spectrum of the filter
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« Example Figures of LPC Spectra

Order =6
Rectangle window
No pre-emphasis

Order = 24
Rectangle window
No pre-emphasis

Order = 128
Rectangle window
Pre-emphasis

Order = 128
Hamming window
No pre-emphasis

Description of Project-2

Fall 2003

Order = 14
Rectangle window
No pre-emphasis

Order = 128
Rectangle window
No pre-emphasis

Order = 128
Hamming window
Pre-emphasis

Plotted by Roger Kuo, Fall 2002
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