Statistical Language Modeling
for Speech Recognition

Berlin Chen 2003

References:

1. X. Huang et. al., Spoken Language Processing, Chapter 11

2. R. Rosenfeld, "Two Decades of Statistical Language Modeling: Where Do We Go from
Here?,” Proceedings of IEEE, August, 2000

3. Joshua Goodman’s (Microsoft Research) Public Presentation Material

4. S. M. Katz, “Estimation of probabilities from sparse data for the language model component of
a speech recognizer,” IEEE ASSP, March 1987

5. R. Kneser and H. Ney, “Improved backing-off for m-gram language modeling,” ICASSP 1995

What is Language Modeling ?

e Language Modeling (LM) deals with the probability
distribution of word sequences, e.g.:

P(“hi")=0.01, P(“and nothing but the truth”) ~ 0.001
P(“and nuts sing on the roof”) = 0

by Jim Unger

.. AND NOTHING
BUT THE TRUTH.

(. ANNUTS SING
ON DE ROOF,

B Jim Unger/Dist by United Media, Jan. 30500

From Joshua Goodman’s material 5

What is Language Modeling ?

« For a word sequence W, P(W) can be decomposed into
a product of conditional probabillities:

PW)=P(w,w,,..,w_)

= P(W)P(W ‘W)P(W ‘WI,W)...P(Wm‘Wl,Wz,...,Wm1)®
= P () TP o)

— E.g.: P(*and nothlng but the truth”) = P(*and”) xP(“nothing|and”)
x P(“but|and nothing”) x P(“theland nothing but”)
x P(“truth|and nothing but the”)

chain rule

— However, it's impossible to estimate and store
if 1 islarge (data sparseness problem etc.) P(wi\w ,

" History of w,

What is LM Used for ?

o Statistical language modeling attempts to capture the
regularities of natural languages

— Improve the performance of various natural language
applications by estimating the probability distribution of various
linguistic units, such as words, sentences, and whole documents

— First significant model was proposed in 1980

PW)=P(w,,w,,.., w,)?

What is LM Used for ?

e Statistical language modeling is most prevailing in many
application domains

— Speech recognition

— Spelling correction

— Handwriting recognition

— Optical character recognition (OCR)
— Machine translation

— Document classification and routing

— Information retrieval

Current Status

 Ironically, the most successful statistical language
modeling technigues use very little knowledge of what
language is

— The most prevailing n-gram language models take no advantage
of the fact that what is being modeled is language

History of length n-1
— It may be a sequence of arbitrary symbols, with no deep
structure, intention, or though behind then

P(Wi\wl,wz,...,wi_l)z P(Wi‘W

iI—n+1°
—

Wiznizseo Wi

L

— F. Jelinek said “put language back into language modeling”

LM in Speech Recognition

For a given acoustic observation X =x_X,,....X,, the goal of
speech recognition is to find out the corresponding word
sequence W =w,w,,..w_ that has the maximum

m

posterior probability pw |x)

W = arg max (VV X) W= W, Wy Wi, W
where W, € Voc {w,,W,,....., w, |
P(XW JPW)
= arg max
w P(X)

= arg Wmax P(X ’VV)P (W)
/ AN

Acoustic Modeling Language Modeling

Posterior Probability Prior Probability

The Trigram Approximation

« The trigram modeling assumes that each word depends
only on the previous two words (a window of three words
total)

— “tri” means three, “gram” means writing
- E.g.:

P(“the]... whole truth and nothing but”) ~ P(“the|nothing but”)
P(“truth]|... whole truth and nothing but the”) ~ P(“truth|but the™)

— Similar definition for bigram (a window of two words total)

 How do we find probabilities?
- Get real text, and start counting (empirically) |

P(“the | nothing but”) ~C[“nothing but the”]/C[“nothing but”]

|

count Probability may be O

Maximum Likelihood Estimate (ML/MLE) for LM

 Given a a training corpus T and the language model A
Corpus T =W, (W, 4 ..W, 4 W, 4

Vocabulary W = {w, w,,..., W, }

N-grams with~ P (T ‘A)E H P (Wk—th ‘hiStory of W, 4,)

same history Wi_tn
are collected N hw.
together - H H An vheT, ;ﬂ“hwjzl

— Essentially, the dlstrlbutlon of the sample counts N hw ; With
the same history h referred as a multinominal (polynominal)
distribution

vheT, P(Ny oo Ny)= HN Hzm, > Ny, =N, and 3 2, =1
hw; W; W

Wi

where p(Wi‘h):/l N, —C[hW ZC[hW] C[h] in corpus T

hw; »

DGR R ORR PR OER &Y - MoRkE BB T Wﬁ% 7 ... P(R&[pkw)=? 9

Maximum Likelihood Estimate (ML/MLE) for LM

« Take logarithm of p(T|A), we have
(D(A): log p(T |A):Z Z thilog ﬂ‘hwi
h W

« Forany pair (h,w)), try to maximize ¢ (A) and subject
to Zihw,. =1,Vh

= FA)= o)y |h[z T _1j

- 0 Z Z thilog ﬂhWi_i_Z Ih[z ﬂhw'_l}
00 (A) T, " o
O, 0 A,
N N N N
= hw +Ih =0 = W, = hw = eeees = Y = _Ih
ﬂ‘hWi /Ihwl ﬂhw2 /’ihw
Z thS
- g ﬂvhwj) _Ih - Ih) _;s Nth i _Nh
) ~ thi C[hWI]
A= =
TN, clh]

10

Malin Issues for LM

Evaluation
— How can you tell a good language model from a bad one
— Run a speech recognizer or adopt other statistical measurements

Smoothing
— Deal with data sparseness of real training data
— Variant approaches have been proposed

Caching
— If you say something, you are likely to say it again later
— Adjust word frequencies observed in the current conversation

Clustering

— Group words with similar properties (similar semantic or
grammatical) into the same class

— Another efficient way to handle the data sparseness problem

11

Evaluation

« Two most common metrics for evaluation a language
model
— Word Recognition Error Rate (WER)
— Perplexity (PP)

 Word Recognition Error Rate

— Requires the participation of a speech recognition system
(slow!)

— Need to deal with the combination of acoustic probabilities and
language model probabilities (penalizing or weighting between
them)

12

Evaluation

* Perplexity

— Perplexity is geometric average inverse language model
probability (measure language model difficulty, not acoustic
difficulty/confusability)

PP (W =W1,W2,...,Wm)=r§/ L 1 L
P(w,) =P(w, [w,,W,,.., W)

— Can be roughly interpreted as the geometric mean of the
branching factor of the text when presented to the language
model

— For trigram modeling:

PPW =w,,W,,..W_)=n L 1 5 L
P(w,) P(w,|lw,) =P(w, |w,_,w,_)

i-2

13

Evaluation

 More about Perplexity

Perplexity is an indication of the complexity of the language if we
have an accurate estimate of P(W)

A language with higher perplexity means that the number of
words branching from a previous word is larger on average

A langue model with perplexity L has roughly the same difficulty

as another language model in which every word can be followed
by L different words with equal probabilities

Examples:
» Ask a speech recognizer to recognize digits: “0, 1, 2, 3,4, 5,6, 7, 8,
9" — easy — perplexity =10

» Ask a speech recognizer to recognize names at a large institute
(10,000 persons) — hard — perplexity = 10,000

14

Evaluation

 More about Perplexity (Cont.)

— Training-set perplexity: measures how the language model fits the
training data

— Test-set perplexity: evaluates the generalization capability of the
language model

 When we say perplexity, we mean “test-set perplexity”

15

Evaluation

e Is a language model with lower perplexity is better?

The true (optimal) model for data has the lowest possible
perplexity

Lower the perplexity, the closer we are to true model

Typically, perplexity correlates well with speech recognition word
error rate

e Correlates better when both models are trained on same data
* Doesn't correlate well when training data changes

The 20,000-word continuous speech recognition for Wall Street
Journal (WSJ) task has a perplexity about 128 ~ 176 (trigram)

The 2,000-word conversational Air Travel Information System
(ATIS) task has a perplexity less than 20

16

Evaluation

« The perplexity of bigram with different vocabulary size

400 /
g e /
E 200

=

0 I L) I 1

10k 30k 40k 60k
Vocabulary Size

Figure 11.6 The perplexity of bigram with different vocabulary sizes. The training set consists
of 500 million words derived from various sources, including newspapers and email. The test
set comes from the whole Microsoft Encarta, an encyclopedia that has a wide coverage of dif-
ferent topics.

17

Evaluation

* A rough rule of thumb (by Rosenfeld)

— Reduction of 5% in perplexity is usually not practically
significant

— A 10% ~ 20% reduction is noteworthy, and usually
translates into some improvement in application
performance

— A perplexity improvement of 30% or more over a
good baseline is quite significant

18

Smoothing

« Maximum likelihood (ML) estimate of language models

has been shown previously, e.g.:
— Trigam probabilities
Clxyz] Clxyz]
P (Z| XYy)= =
(219 > Clxyw] CT[xy]

_ o count
— Bigram probabilities

P (7 10)= 5ot - S

W

19

Smoothing

Data Sparseness

— Many actually possible events (word successions) in the test set
may not be well observed in the training set/data

e E.g. bigram modeling

P(read|Mulan)=0 =) P(Mulan read a book)=0
= P(W)=0 = P(X]W)P(W)=0

— Whenever a string W such that P(W)=0 occurs during
speech recognition task, an error will be made

20

Smoothing

* QOperations of smoothing

— Assign all strings (or events/word successions) a nonzero
probability if they never occur in the training data

— Tend to make distributions flatter by adjusting lower
probabilities upward and high probabilities downward

21

Smoothing: Simple Models

e Add-one smoothing

— For example, pretend each trigram occurs once more than it
actually does

Clxyz]+1 Clxyz]+1
Pavn (219) 5 b= ChyT+v

W

V :number of total vocabulary words

e Add delta smoothing

Clxyz |+ 0
I:)smooth (Z | Xy)z CIE(;//]J_V5

Works badly. DO NOT DO THESE TWO (Joshua Goodman said)

22

Smoothing: Back-Off Models

 The general form for n-gram back-off

smooth(| —n+1>°°" | 1)
{ (| —N+10°° | 1) lf C[| —Nn+12°°° | 19W]>0
a(Wl—n+19"'9W|—1) I:)smooth(vv | —N42°°°" | 1) if C[| n+1o°° '9Wi—19Wi]_O

— Ol(Wi_n+1,---, Wi_l) : normalizing/scaling factor chosen to make
the conditional probability sum to 1

* le, Z Psmooth (Wi |Wi—n+19"‘9 \Ni—l):1
Wi

= Z A(]W| n+lo°° 9Wi—1)

woohn W W
For example, a(Wi_nH,...,Wi_l): = ()
Z smooth Wi |W| n+2o°° ’WI 1
W ,C (Wi g e Wiy, W; [0

23

Smoothing: Interpolated Models

 The general form for Interpolated n-gram back-off

smooth(| —Nn41o°° |1)

_/1(|n+19 ’) (| —n+1>** ’) (1 2“(|n+19 9VV| 1)) smooth(| —n+29°°° |1)

P (W, | w,

_ 7W'
i—n+19° i []
% Wi nigsees Wiy

« The key difference between backoff and interpolated
models

— For n-grams with nonzero counts, interpolated models use
information from lower-order distributions while back-off models
do not

— Moreover, n-grams with the same counts can have different
probability estimates

24

Clustering

* Class-based language Models

— Define classes for words that exhibit similar semantic or
grammatical behavior

WEEKDAY = Sunday, Monday, Tuesday, ...

MONTH = January, February, April, May, June, ...
EVENT=meeting, class, party, ...

e P(Tuesday| party on) is similar to P(Monday| party on)

25

Clustering

A word may belong to more than one class and a class
may contain more than one word (many-to-many

mapping)

: - :
a meeting Sunday IS canceled
the |—| date [on] Monday will be postponed
one party J uesday
_ -
in January prepared
February arranged
April

o

26

Clustering

The n-gram model can be computed based on the
previous n-1 classes

— If trigram approximation and unique mappings from words to
word classes are used

P(Wi‘wi—nJrl"'Wi—l): P(Wi‘wi—2 ’Wi—l)
P(Wi ‘Wi—z W, _,) = F’(Wi \Class (Wi))P (CIaSS (Wi){Class (Wi—z)CIaSS (Wi—l))
Class (Wi) : the class which w, belongs to

— Empirically estimate the probabilities
Clw,]
C|Class (w,)]

ass (w YClass (w ass ()= C|Class (w, _,)Class (w,_,)Class (w,)]
P (Class (w,JClass (.)Class (w,.,) C|Class (w, ,)Class (w, ,)]

P (w,|Class (w,))=

27

Clustering

« Clustering is another way to battle data sparseness
problem (smoothing of the language model)

* For general-purpose large vocabulary dictation
application, class-based n-grams have not significant
Improved recognition accuracy

— Mainly used as a back-off model to complement the lower-order
n-grams for better smoothing

* For limited (or narrow discourse) domain speech
recognition, the class-based n-gram is very helpful

— Because the class can efficiently encode semantic information
for improved keyword-spotting and speech understanding
accuracy

— Good results are often achieved by manual clustering of
semantic categories

28

Caching

The basic idea of cashing is to accumulate n-grams
dictated so far in the current document/conversation and
use these to create dynamic n-grams model

Trigram interpolated with unigram cache
cache (Z | Xy) smooth (Z | Xy)+ (1_ 2’) cache (Z | hlStOI‘y)

history : document/conversation dictated so far
Clz e history] C[z e history]
length|history] =C[w e history|

P_.(z]history)=

Trigram interpolated with bigram cache

I:)cache (Z | Xy) smooth (Z | Xy) () cache (Z | y hIStory)
Clyz € history |

Cly e history |

P (z| y,history)=

29

Caching

* Real Life of Caching

Someone says “l swear to tell the truth” } Cache remembers!
System hears “I swerve to smell the soup”

Someone says “The whole truth”, and, with cache, system hears
“The toll booth.” — errors are locked in

Caching works well when users corrects as they go, poorly or
even hurts without correction

by Jim Unger

REPEAT AFTER ME ...
1 SWEAR TO TELL

30

Known Weakness in Current LM

e Brittleness Across Domain

— Current language models are extremely sensitive to changes in
the style or topic of the text on which they are trained

— E.g., conversations vs. news broadcasts

* False Independent Assumption

— In order to remain trainable, the n-gram modeling assumes the
probability of next word in a sentence depends only on the
identity of last n-1 words

31

LM Integrated into Speech Recognition

* Theoretically,

e

W = arg max P (W)P(X’W)

* Practically, language model is a better predictor while
acoustic probabilities aren’t “real” probabilities

— Penalize insertions

N

W = arg max P(W)" (X’VV) engtn(W
W

,where «, [can be empirically decided

32

Good-Turing Estimate

* First published by Good (1953) while Turing is PmE
acknowledged mfgrgrﬁsnﬁftézg of

n-grams here

S

* A smoothing technique to deal with infrequent m-grams
(m-gram smoothing), but it usually needs to be used
together with other back-off schemes to achieve good
performance

« How many words were seen once? Estimate for how
many are unseen. All other estimates are adjusted
(down) to give probabilities for unseen

33

Good-Turing Estimate

 For any m-gram, a=w" that occurs r times (r =cjw"]),
we pretend it occurs r* times (" =c’[w"]),
)Mhest
n

r

wh ere n, is the number of m - grams that occurs exactly r times

r'=(r+1

9

Not a conditional
probability !

L/—_%he probability estimate for a m-gram, a=w," , with r counts

in the training data

*

Psr (a) = I‘W, where N is the size (total word counts) of the training data

 The size (word counts) of the training data remains the
same

N=3>r"-n =3 (+1)n, =3r-n =N
r=0 r=0 r=0

.

34

Good-Turing Estimate

It follows from above that the total probability estimate
using for the set of m-grams that actually occurred in the

sample is
GT (W)— 1 - —

w",c|w/]>0

* The probability of observing some previously unseen m-
grams is
(W)=

GT
w",clw"]:O

— Which is just a fraction of the singletons (m-grams occurring only
once) in the text sample

35

Good-Turing Estimate: Example

Imagine you are fishing. You have caught 10 Carp (ZE!f0),
3 Cod (#7:0), 2 tuna(kfj 1), 1 trout(E#reT), 1 salmon(EE f),
1 eel(itf1)

How likely is it that next species is new?

— Po=n,/N=3/18= 1/6

How likely is eel? 1°

- n,=3,n,=1

— 1"=2x1/3=2/3

— P(eel) = 1*/N = (2/3)/18 = 1/27

How likely is tuna? 2°

- n,=1,n;=1

— 2'=3x1/1=3

— P(tuna) =2°/N=3/18 = 1/6

But how likely is Cod? 3°

— Need smoothing for n, in advance

36

Good-Turing Estimate

 The Good-Turing estimate may yield some problems
when n.,,=0

— An alternative strategy is to apply Good-Turing to the n-grams
(events) seem at most k times, where k is a parameter chosen
so thatn,,, #0, r=1,...,k

37

Good-Turing Estimate

 For Good-Turing estimate, it may happen that an m-gram
(event) occurring k times takes on a higher probability
than an event occurring k+1 times
— The choice of k may be selected in an attempt to overcome such

a drawback)
A +1 n
P a — L k+1
GT (k) N nk
A k +2 n
PG (ak+): | 2
! 1 N r]k+1

— Experimentally, k ranging from 4 to 8 will not allow the about
condition to be true (for r <k)

F,)\GT (ak)< F,)\GT (ak+1)
= (k+1)n2,-n_.-n,.,(k+2)<0

38

Katz Back-off Smoothing

o Extend the intuition of the Good-Turing estimate by
adding the combination of higher-order language
models with lower-order ones

— E.g., bigrams and unigram language models

e Larger counts are taken to be reliable, so they are not
discounted
— E.qg., for frequency counts r > k

 Lower counts are discounted, with total reduced counts
assigned to unseen events, based on the Good-Turning
estimate
— E.qg., for frequency counts r <k

39

Katz Back-off Smoothing

 Take the bigram (m-gram, m=2) counts for example:

r TR
C o lwiwi]=qdr if kK21 >0
kﬂ(Wi—l)PKatZ (W|) it r =0

lL.r=C [Wi—lwi]

r- . .
2. d, = — :discount constant, satisfying to the following
r

Note: d, should 1 ___________________ two equatons

be calculated for |

different n-gram r * Kk (d)

counts and | — _ — :

different n-gram ! d r — H and Z n r r r nl

histories, e.g., i r __________________________ r:1 __

w;_, here

3 . *
ZWIC[Wl lWI] ZWIC[WI 1W,]>0C [WI lWI]
,B (Wi_1) — Assume lower level
Z W, C [w,]=d Pt (Wi) LM probability has

been defined

Katz Back-off Smoothing

e Derivation of the discount constant; d, =

Two constraint s are imposed

& ; Both sides
20 (r-r) multiplied by n,

r=1 :1
= - (k+Dn,.,
k
> nr(r —r)n1
r=1 _
- n — (k + 1)nk+1 nl

r' (k+1)n.,

If equations (1) and (2) are related together, we have

(r - r*)nl '
—r— 3
n1 — (k + l)nk+1 Y ()
— (r_r)nl =1—Ur_:1_dr
r[n, —(k+1)n,,,] ' Both sides
(r=r)n, divided by r

r[nl o (k + l)nk+l] 41

=d =1-

Katz Back-off Smoothing

Derivation of the discount constant

= d, =1- (r—r'h,
r[nl _(k +1)nk+1]

_ r[nl — (k +1)nk+1]_ (I’ — r*)nl

d

r

ther- nytermin
the nominator is

rn, =k +1)n,,,]
r'ny—r(k +1)n, .,

) r[nl o (k + l)nk+1]

——

q r n,
I’ 1 (k+1)nk+1
nl

eliminated

Both the nominator and
denominator are divided
byr- n;

42

Katz Back-off Smoothing

« Take the conditional probabilities of bigrams (m-gram, m=2)
for example:

Clwi,w JClwi,] if r>k
d elw wlelw | qiilc-§ 0
\a(wi—l)PKatz (Wi) =

N\

I:)Katz (Wi ‘Wi—l):

1. discount constant
r’ (k +1)n, .,
— r nl
" 1 — (k + 1)nk+1
nl

2. normalizing constant

94 (W): L Z w;:C [wi_w; >0 PKatz (Wi ‘Wi—l)
- Z w;:C [w;_w;]=0 I:)Katz (Wi) .

Katz Back-off Smoothing: Example

* A small vocabulary consists of only five words,
i.e., V={w,w,..,w . The frequency counts for word pairs

started with w, are:
Clwg, w,] =3, Clwg,wi] =2, Clwg,] =1, Clwy, w | =Clwj, wi]=0
, and the word frequency counts are:

Clw]=6,Clw] =8 Clw]=10.Clw;]=6, Clw] =4

Katz back-off smoothing with Good-Turing estimate is
used here for word pairs with frequency counts equal to
or less than two. Show the conditional probabillities of

word bigrams started with w, |, i.e.,

I:)Katz (Wl ‘Wl)9 I:)Katz (W2 ‘Wl)9 """ I:)Katz (WS ‘Wl) 9

44

Katz Back-off Smoothing: Example

*

n . .
r= (r + 1) "+ where n, is the number of n - grams that occurs exactly r times

nr
in the training data 1 k& ne
r n
3 1 d - 1
PKatz (W2|W1): PML (W2|W1): g: 5] i (k + 1)nk+1
n
1*:(1+1)-i—=2, 2*:(2+1)-i—=3 1
3 (2+1)1 3, 2 (2+1)1
d. = 2 1 _ 2 _3 4 21 1 _2-3_1
SR I 5 R T R RN D E B R R
1 1
32 1
For r=2= P, (W3|Wl):d PML(W |w)_Zg:Z
1 1 1
For r=1= P, (W4|W) dPML(W4|W)_EgzE
R S
2 4 12 34 2
a (W)= 6 4 "0 12 Noteice that P, (W)= P, (W) here
3434
6 1
For r=20 P kat (W|W) a(W)PML() _‘3'34:W
4 1
Pz (W |W) a(W)PML()__.5.34 :F

Al’ld PKatz (W1|W1)+ I:)Katz (W2|W1)+ e PKatz (W5|W1): 1 45

Kneser-Ney Back-off Smoothing

e Absolute discounting without the Good-Turning
estimate

e The lower n-gram (back-off n-gram) is not proportional
to the number of occurrences of a word but instead to
the number of different words that it follows, e.g.:

— In “San Francisco”, “Francisco” only follows a single history, it
should receive a low unigram probability

— In *US dollars”, “TW dollars” etc., “dollars” should receive a
high unigram probability

C(US dollars)=200
C(HK dollars)=100
C(TW dollars)=25

46

Kneser-Ney Back-off Smoothing

e Take the conditional probabilities of bigrams (m-gram, m=2)

for example: 0<D=<I
max{C[w;_,w; |- D, 0; if Clw,_,,w,][>0
SRR e T
\ a(W,_,)Py (W) otherwise

L Pan (Wi):C[.Wi]/;C[.Wj]’

Clew,] is the unique words preceding w.

2. normalizing constant

max {C[w,_w;]-D,0}
1 - Z w;i:C [w;_w; [>0 C [V\lli—l]

Z w;:C [w;_w; -0 PKN (Wi)

a (Wi—l) =

47

Kneser-Ney Back-off Smoothing: Example

« Given a text sequence as the following:
SABCAABBCS (S is the sequence’s start/end marks)

Show the corresponding unigram conditional
probabilities:

CleA]=3 cCleB]=2
Clec]=1 cCles]=1

= P (A) =

| W

Pn (B): =

Pen (C) =

Pen (S) =

48

Katz vs. Kneser-Ney Back-off Smoothing

 Example 1. Wall Street Journal (JSW), English

— A vocabulary of 60,000 words and a corpus of 260 million words
(read speech) from a newspaper such as Wall Street Journal

Table 11.2 N-gram perplexity and its corresponding speaker-independent speech recognition
word error rate.

Models Perplexity Word Error Rate
Unigram Katz 1196.45 14.85%
Unigram Kneser-Ney 1199.59 14.86%
Bigram Katz 176.31 11.38%
Bigram Kneser-Ney 176.11 11.34%
Trigram Katz 95.19 9.69%
Trigram Kneser-Ney 91.47 9.60%

49

Katz vs. Kneser-Ney Back-off Smoothing

« Example 2: Broadcast News Speech, Mandarin

— A vocabulary of 72,000 words and a corpus of 170 million Chinese
characters from Central News Agency (CNA)

— Tested on Mandarin broadcast news speech collected in Taiwan,
September 2002, about 3.7 hours

Models Perplexity Character Error Rate
(after tree-copy search, TC)

Bigram Katz 959.56 16.81

Bigram Kneser-Ney 942.34 18.17

Tigram Katz 752.49 14.62

Tigram Kneser-Ney 670.24 14.90

— The perplexities are high here, because the LM training materials
are not speech transcripts but merely newswire texts

Interpolated Kneser-Ney Smoothing

e Always combine both the higher-order and the lower-
order LM probability distributions

e Take the bigram (m-gram, m=2) conditional probabilities
for example:

maX{C[W LW - D,0}

Pion (W, [W) = + A(W,_,)

Clw,_, |

— Where
. C[o Wi] : the number of unique words that precede W,

« A(W,_,) : a normalizing constant that makes the probabilities
sumto 1

/I(Wi—l) — C[V[\j]

Clw]

C[w,_, o]: the number of unique words that

follow the history w;_

51

Interpolated Kneser-Ney Smoothing

 The exact formula for interpolated Kneser-Ney smoothed
trigram conditional probabilities

max{C|w, ,w, ,w;|-D,,0}
Clw,_,w]
_ max{Clew, ,w; |- D,, 0}

I:)IKN (Wi | Wi—l) _ ZWC[‘ Wi_IW]

maxiclew] DL0) 1
Pin (W) = ZWC[’W] +l|V |

+ AW, Wi)Py (W [W)

PIKN (Wi | Wi—ZWi—l) —

+ AW,)Py (W)

For the TKN bigram and unigram, the number of
unique words that precede a given history is
considered, instead of the frequency counts.

52

Back-off vs. Interpolation

 When determining the probability of n-grams with
nonzero counts, interpolated models use information

from lower-order distributions while back-off models do
Not

* In both back-off and interpolated models, lower-order
distributions are used in determining the probability
of n-grams with zero counts

e Itis easy to create a back-off version of an interpolated
algorithm by modifying the normalizing constant

53

