Concept Learning
Berlin Chen 2004

References:

1. Machine Learning , Chapter 2
2. Tom M. Mitchell’s teaching materials



What is a Concept ?

Concept of
Dogs

Concept of

Concept of
Fishes

A concept describes a subset of
objects or events defined over a
larger set



Concept Learning

learning based on symbolic representations

* Acquire/Infer the definition of a general concept or
category given a (labeled) sample of positive and
negative training examples of the category

— Each concept can be thought of as a Boolean-valued function
o Approximate a Boolean-valued function from examples

— Concept learning can be formulated as a problem of searching
through a predefined space of potential hypotheses for the
hypothesis that best fits the training examples

— Take advantage of a naturally occurring structure over the
hypothesis space

* General-to-specific ordering of hypotheses



Training Examples for EnjoySport

e Concept to be learned
— “Days on which Aldo enjoys his favorite water sport”
Attributes

Sky Temp Humid Wind Water Forecst EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Days< Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
v |Sunny Warm High Strong Cool Change Yes

e Days (examples/instances) are represented by a set of
attributes

 What is the general concept ?

— The task is to learn to predict the value of EnjoySport for an
arbitrary day based on the values of other attributes

— Learn a (a set of) hypothesis representation(s) for the concept



Representing Hypotheses

Many possible representations for hypotheses h
Here h is conjunction of constraints on attributes

Each constraint can be
— A specific value (e.g., “Water=Warm” )
— Don't care (e.g., “Water=?")

— No value acceptable (e.g., “Water=@ ") A hypothesis is

a vector of constraints

For example
Sky AirTemp Humid Wind Water Forecast
< Sunny ? ? Strong ? Same >

— Most general hypothesis
< ? ? ? ? ? ? >

by

— Most specific hypothesis

< O D D D D ®>|:ﬁ>

All are positive
examples

All are negative
examples g



Definition of Concept Learning Task

e Given

— Instances X: possible days, each described by the attributes
Sky, AirTemp, Humidity, Wind, Water, Forecast

(Sunny, Cloudy, Rainy) (Warm, Cold) (Normal, High)  (Strong, Week) (Warm, Cool) (Same, Change)

— Target concept/function c : EnjoySport X — {0, 1}

— Hypotheses H : Conjunctions of Literals. E.g.,
<?,Cold, High, ?, ?,? >

— Training examples D : Positive and negative examples
(members/nonmembers) of the target function
<X1,C(X)>, <X,,C(X,)>,...., <X,,C(X,)>
° Determ|ne ™ target concept value

— A hypothesis h in H (an approximate target function) such that
h(x)=c(x) for all x in D



The Inductive Learning Hypothesis

« Any hypothesis found to approximate the target function
well over a sufficiently large set of training examples
—> will also approximate the target function well over
other unobserved examples

— Assumption of Inductive Learning

* The best hypothesis regarding the unseen instances is the
hypothesis that best fits the observed training data



Viewing Learning As a Search Problem

« Concept learning can be viewed as the task of searching
through a large space of hypotheses

Instance space X

Sky (Sunny/Cloudy/Rainy)
AirTemp (Warm/Cold)
Humidity (Normal/High)
Wind (Strong/Weak)
Water (Warm/Cool)
Forecast (Same/Change)

=> 3*2*2*2*2*2=96 instances

Hypothesis space H

5*4*4*4*4*4=5120 syntactically
distinct hypotheses

1+4*3*3*3*3*3=973 semantically
distinct hypotheses

Each hypothesis is represented as
a conjunction of constraints



Viewing Learning As a Search Problem

« Study of learning algorithms that examine different
strategies for searching the hypothesis space

 How to exploit the naturally occurring structure in the
hypothesis apace ?
— Relations among hypotheses



General-to-Specific-Ordering of Hypothesis

Many concept learning algorithms organize the search
through the hypothesis space by taking advantage of a
naturally occurring structure over it

— *“general-to-specific ordering”

I’ ]_= {SH????_}?, Z, 2, Strgr-;-'g} Z, 7> Suppose that /71 and /72 classify

h = <Sunny, 7, 72, 7, 7, 7> positive examples
2 - » » »

* h, is more general than h;
— h,imposes fewer constraints on instances
— h, classify more positive instances than h; does

— A useful structure over the hypothesis space

10



More-General-Than Partial Ordering

e Definition
— Let h;and h, be Boolean-valued functions defined over X.
Then h; is more general than h, (h; >, h,) if and only if

(vx e X) [(hk/(X)=1) — (ny(x)=1)]

x satisfies A,

 We also can define the more-specific-than ordering

11



General-to-Specific Ordering of Hypotheses

* An illustrative example

Instances X Hypotheses H

A
L J ifi
> A ) » Specific
\ N

/
N //

N ®
B (‘\ LA
e N yd S

-;_‘77&\ // AN
N A /’

e N ;{ @
1 _‘;\T_f——*-""")‘;(\ 2 « ‘\
\_\ /// \\\ p Vs s

® L 3 ‘® General
A J

x| = <Sunny, Warm, High, Strong, Cool, Same> h 1= <Sunny, ?, ?, Strong, ?, ?>
x2= <Sunmny, Warm, High, Light, Warm, Same> h2= <Sunny, ?, ?, 7, 7, 7>
h3= <Sunny, ?, ?, 7, Cool, ?>

e Suppose Instances are classitied positive by h,, h,, h,
— h, (imposing fewer constraints) are more general than h; and h,

partial order relation
?
o hl A — h3 - antisymmetric, transitive

12



Find-S Algorithm

Find a maximally specific hypothesis by using the
more-general-than partial ordering to organize the
search for a hypothesis consistent with the observed

training examples
he($,0.6.9.9.4)

1.
2.

3.

Initialize h to the most specific hypothesis in H

For each positive training instance X
— For each attribute constraint a; in h
If the constraint a, in h is satisfied by x

Then do nothing
Else replace a in h by the next more general constraint that is

satisfied by x
Output hypothesis h

13



Find-S Algorithm

* Hypothesis Space Search by Find-S

Instances X Hypotheses H
A
Py P ® Specific
x5 .
®
o
X @
\ x5
L]
L J
® x® ™ General
4
\J
hy=<D,9,9, D,D, D>
X = <Sunny Warm Normal Strong Warm Same>, + !11 = <Sunny Warm Normal Strong Warm Same>
Xy = <Sunny Warm High Strong Warm Same>, + ho = <Sunny Warm ? Strong Warm Same>
X3 = <Rainy Cold High Strong Warm Change>, - 113 = <Sunny Warm ? Strong Warm Same>  pq change!
x , = <Sunny Warm High Strong Cool Change>, + h = <Sunny Warm ? Strong ? ? >

4 4

— Substitute a “?” in place of any attribute value in h that is not
satisfied by the new example

14



Find-S Algorithm

 Why F-S never check a negative example ?
— The hypothesis h found by it is the most specific one in H

— Assume the target concept c is also in H which will cover both
the training and unseen positive examples

e cis more general than h

— Because the target concept will not cover the negative examples,
thus neither will the hypothesis h

Instances X Hypotheses H

A
[ ] .
[ N /A ) Specific
AN e N
" .
S AN
: A s
P "
-/ .
N _\,\_7-——-7—-*';{(\12 EAY
¢ L X ./ \\. General
\ ]

15



Complaints about Find-S

Can not tell whether it has learned concept
(Output only one. Many other consistent hypotheses may exist!)

Picks a maximally specific h (why?)
(Find a most specific hypothesis consistent with the training data)

Can not tell when training data inconsistent
— What if there are noises or errors contained in training examples

Depending on H, there might be several !

16



Consistence of Hypotheses

* A hypothesis h is consistent with a set of training
examples D of target concept c if and only if
h(x)=c(x) for each training example <x, c(X)>in D

(v(x c(x))e D) h(x)=c(x)

Consistent(h, D)

« But satisfaction has another meaning

— An example x is said to satisfy a hypothesis h when h(x)=1,
regardless of whether x Is positive or negative example of the
target concept

17



Version Space

Wit chell 19770

« The version space VS, , with respect to hypothesis
space H and training examples D is the subset of
hypotheses from H consistent with all training
examples in D

VSy p = fheH [Consistent (h, D)}

— A subspace of hypotheses
— Contain all plausible versions (# it) of the target concepts

18



List-Then-Eliminate Algorithm

1. VersionSpace < a list containing all hypotheses in H

2. For each training example, <x, c(x)>
remove from VersionSpace any hypothesis h for which
h(X) # c(x)
— l.e., eliminate hypotheses inconsistent with any training
examples

— The VersionSpace shrinks as more examples are observed

3. Output the list of hypotheses in VersionSpace

19



Drawbacks of List-Then-Eliminate

« The algorithm requires exhaustively enumerating all
hypotheses in H

— An unrealistic approach ! (full search)

 If insufficient (training) data is available, the algorithm will
output a huge set of hypotheses consistent with the
observed data

20



Example Version Space

Employ a much more compact representation of the

version space in terms of its most general and least
general (most specific) members

S:

/\

<Sunny, ?, ?, Strong, ?, ?>

{ <Sunny, Warm, ?, Strong, ?, 7>}

<Sunny, Warm, ?, ?, 2, ?>

NN

G:| {<Sunnmny, 2,2, 2,2, 72> <? Warm, ?, 2, 2, 7>}

Specific
------- Also found by F-S |
<?, Warm, ?, Strong, ?, ?>
General

Arrows mean more-general-than relations

[ Sky

Temp Humid Wind Water Forecst EnjoySpt|

| Sunny
Sunny
Rainy
| Sunny Warm

Warm Normal Strong Warm Same Yes
High Strong Warm Same Yes
High Strong Warm Change No
High Strong Cool Change Yes 21

r Warm
Cold



Representing Version Space

« The General boundary G, of version space
VS p Is the set of its maximally general members

G = {g  HConsistent (g, D) A (<39’ € H (g’ >, g) Consistent(g’, D)]}

 The Specific boundary S, of version space
VS p Is the set of its maximally specific members

S = 1{s e H|Consistent (s, D) A (—3s’ e H )[(s >, 5') » Consistent (s', D)}

 Every member of the version space lies between
these boundaries

VSupo=theH|@seS)(3geG) g >, h>, s

— Version Space Representation Theorem

22



Candidate Elimination Algorithm

« G < maximally general hypotheses in H

G, « {<7 2999 7>} Should be specialized

« S < maximally specific hypotheses in H

S, « {<¢ b, b,d,d,0 >} Should be generalized

Wit chell 19798

23



Candidate Elimination Algorithm

* For each training example d, do

— If d is a positive example
« Remove from G any hypothesis inconsistent with d
e For each hypothesis s in S that is not consistent with d
— Remove s from S
— Add to S all minimal generalizations h of s such that
» his consistent with d, and
» some member of G is more general than h

— Remove from S any hypothesis that is more general than
another hypothesis in S
(i.e., partial-ordering relations exist)

positive training examples force the S boundary become increasing general

24



Candidate Elimination Algorithm

— If d is a negative example
« Remove from S any hypothesis inconsistent with d
* For each hypothesis g in G that is not consistent with d
— Remove g from G
— Add to G all minimal specializations h of g such that
» his consistent with d, and
» some member of S is more specific than h

— Remove from G any hypothesis that is less general than
another hypothesis in G

negative training examples force the G boundary become increasing specific

25



Example Trace

<0, @, 3, B, D, T>)

{<?,?,7,2, 2, 7>}

26



Example Trace

0'|<0,2,0, 0 0, 3>

|

S 1 : [ { <Sunny, Warm, Normal, Strong, Warm, Same> }

|

SZ= | <Sunny, Warm, ?, Strong, Warm, Same>}

GO . Gl ] GZ: {<?, ?, ?, ?, ?, 9>}

Training examples:

1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes

2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

27



Example Trace

32 , S 3 : | { <Sunny, Warm, ?, Strong, Warm, Same> }

| <Sunny, ?, 2, 2, 2, 72> <?, Warm, 2,2, 2, 2> <2, 2,2, 2,2, Same>}

~ ]

Go. | (<2, 2, 2,2 2 72>}

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

G, has six ways to be minimally specified
— Why <?,? ,Normal,?,?,? > etc. do not exist in G5 ?



Example Trace

S 3: |{<Sunny, Warm, ?, Strong, Warm, Same> )

l

S 4: { <Sunny, Warm, ?, Strong, ?, 7>}

G 4. {<Sunny, 2,2, 2, 2, 2> <2, Warm, 2, 2, 2, 72>}

T

G3: {<Sunny, 2, 2, 2, 2, 2> <2, Warm, 2, 2, 2, 7> <2, 2,2, 2, 2, Sume>}

Training Example:

4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Notice that,

— Sis a summary of the previously positive examples

— G is a summary of the previously negative examples 29



Example Trace

S 4t [{<Sunny, Warm, ?, Strong, ?, 7>}

/\

<Sunmny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, 7, 7, 7> <?, Warm, ?, Strong, ?, 7>

NSNS

G4 {<Sunny, 2, 2, 7, 2, 7>, <2, Warm, ?, ?, 7, 7>}

« S and G boundaries move monotonically closer to each
other, delimiting a smaller and smaller version space

30



What Next Training Example

* Learner can generate useful queries
— Discriminate among the alternatives competing hypotheses in

the current version space .
Specific

S: | { <Sunny, Warm, ?, Strong, ?, 7>} x

/\

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, 2, 2, 2, ?> <2, Warm, ?, Strong, ?, 7> x

NSNS

If a positive hypothesis is posed:
<Sunny, Warm, Normal, Light, Warm, Same >

What if it is a negative one ? a1

General



How Should These Be Classified ?

S: | { <Sunny, Warm, ?, Strong, ?, 7> |}

/\

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, 7, 7> <2, Warm, ?, Strong, ?, ?>

NN 7

G:| {<Sunny, 2,2, 272, 2, 72> <? Warm, ?, ?, 2, ?>

Instance Sky AirTemp Humidity @ Wind  Water Forecast EnjoySport

A Sunny  Warm Normal Strong Cool  Change ? Yes?
B Rainy Cold Normal Light Warm Same ? No ?
C Sunny Warm Normal Light Warm Same ? ?

D Sunny Cold Normal Strong Warm Same ? 5

32



Biased Hypothesis Space

* Biased hypothesis space

— Restrict the hypothesis space to include only conjunctions of
attribute values

— l.e., bias the learner to consider only conjunctive ypothesis

« Can'’t represent disjunctive target concepts

“Sky=Sunny or Sky=Cloud ”

Example Sky AirTemp  Humidity Wind Water  Forecast  EnjoySport
] Sunny Warm Normal Strong Cool Change Yes
; Cinu dy.© Warm Normal Strong  Cool Change Yes
3 Rainy Warm Normal  Strong Cool Change No

After the first two examples learned:
<?, Warm, Normal, Strong, Cool, Change>

33



Summary Points
Concept learning as search through H
General-to-specific ordering over H

Version space candidate elimination algorithm
— S and G boundaries characterize learners uncertainty

Learner can generate useful queries

34



Homework #1

 Paper Reading

— " Machine Learning and Data Mining," T. Mitchell,
Communications of the ACM, Vol. 42, No. 11, November 1999.

35



