Natural Language Processing

Berlin Chen 2004
Textbooks & References

• Textbooks
 – C. Manning and H. Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999

• References
 – X. Huang, A. Acero, H. Hon, Spoken Language Processing, Prentice Hall, 2001
Motivation for NLP

• **Academic**: Explore the natural of linguistic communication
 – Obtain a better understanding of how language work

• **Practical**: Enable effective human-machine communication
 – Conversational agents are becoming an important form of human-computer communication
 – Revolutionize the way computers are used
 • More flexible and intelligent
Motivation for NLP

• Different Academic Disciplines: Problems and Methods
 – Electrical Engineering, Statistics
 – Computer Science
 – Linguistics
 – Psychology

• Many of the techniques presented were first developed for speech and then spread over into NLP
 – E.g. Language models in speech recognition
Turing Test

- Alan Turing, 1950

 Predicted at the end of 20 century a machine with 10 gigabytes of memory would have 30% chance of fooling a human interrogator after 5 minutes of questions

 Does it come true?
Hollywood Cinema

- Computers/robots can listen, speak, and answer our questions
 - E.g.: HAL 9000 computer in “2001: A Space Odyssey”
 (2001太空漫遊)
State of the Art

- Canadian computer program accepted daily weather data and generated weather reports (1976)
- MIT Spoken dialogue systems for information of restaurant, air travel, etc. (1991~)
- AT&T, How May I Help You?
 - Read student essays and grade them
 - Automated reading tutor
 -
State of the Art

- CMU Universal Speech Interface
Statistical and Non-Statistical NLP

• The dividing line between the two has become much more fuzzy recently
 – An increasing number of non-statistical researches use corpus evidence and incorporate quantitative methods
 • Corpus: “a body of texts” (大量的文稿)

 – Statistical NLP needs to start with all the scientific knowledge available about a phenomenon when building a probabilistic model, rather than closing one’s eye and taking a clean-slate approach
Models and Algorithms for NLP

• Models
 - Finite-state automata
 - Finite-state transducers
 - Markov models
 - Hidden Markov models

• Algoirithms
 - Search:
 - Dynamic programming, depth-first search, best-first search, A* search
 - Learning/Training Methods

Logic

First order logic (predicate calculus)
Semantic networks
Conceptual dependency

Regular grammars
Regular relations
Context-free grammars
Feature-augmented grammars

Finite-state automata
Finite-state transducers
Markov models
Hidden Markov models

State Machines

NLP

Formal Rule Systems

Speech Guys

Linguistics Guys

At Guys

Knowledge

Pragmatics

discourse

Syntax

morphology

Phonetics/Phonology

Speech Guys Linguistics Guys
Major Topics for NLP

• Probability Theory/Statistics
 – Supervised/Unsupervised Machine Learning Techniques

• Words
 – Morphology
 – Regular expressions
 – Automata, Finite-State Transducers

• Syntax
 – Part-of-Speech Tagging
 – (Probabilistic) Context-Free Grammar
 – Parsing
Major Topics for NLP

• Semantics/meaning
 – Representation of Meaning
 – Semantic Analysis
 – Word Sense Disambiguation

• Pragmatics
 – Natural Language Generation
 – Discourse, Dialogue and Conversational Agents
 – Machine Translation
Topic List and Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:20</td>
<td>Course Overview & Introduction
Linguistic Essentials</td>
</tr>
<tr>
<td>2:21</td>
<td>Linguistic Essentials
Regular Expressions and Automata</td>
</tr>
<tr>
<td>3:05</td>
<td>Mathematical Foundations 朱思錦</td>
</tr>
<tr>
<td>3:12</td>
<td>Part-of-Speech Tagging</td>
</tr>
<tr>
<td>3:19</td>
<td>Break (ICDAT 2004)</td>
</tr>
<tr>
<td>3:26</td>
<td>Collections 張志豪
Parsing with Context-Free Grammars</td>
</tr>
<tr>
<td>4:00</td>
<td>Break</td>
</tr>
<tr>
<td>4:16</td>
<td>Word Sense Disambiguation 劉理論</td>
</tr>
<tr>
<td>4:23</td>
<td>Midterm</td>
</tr>
<tr>
<td>4:30</td>
<td>Text Categorization 鄭永幸</td>
</tr>
<tr>
<td>5:07</td>
<td>Probabilistic Context-Free Grammars</td>
</tr>
<tr>
<td>5:14</td>
<td>Paper Survey</td>
</tr>
<tr>
<td>5:24</td>
<td>Break (ICASSP 2004)</td>
</tr>
<tr>
<td>5:28</td>
<td>Paper Survey</td>
</tr>
<tr>
<td>6:11</td>
<td>Semantics and Logical Form</td>
</tr>
<tr>
<td>6:18</td>
<td>Final</td>
</tr>
</tbody>
</table>

13
Applications of NLP

• Speech Recognition
• Information Retrieval and Extraction
• Summarization
• Question Answering
• Conversational Agents
• Machine (Speech/Language) Translation
• Spelling Check
• Segmentation and Alignment
• Bioinformatics
•
Resources

• Corpora (Speech/Language resources)
 – Refer speech waveforms, machine-readable text, dictionaries, thesauri as well as tools for processing them
 • LDC - Linguistic Data Consortium
 • The Association for Computational Linguistics and Chinese Language Processing
Resources

• Institutes/People
 – Foreign
 • MIT
 • CU
 • CMU
 • JHU
 • UMass
 • Cambridge
 • Microsoft
 • IBM
 • MITRE
 • HP
 • ……………
Resources

• Conferences and Journals
 – **ACL**: Association for Computational Linguistics
 – **COLING**: International Conference on Computational Linguistics
 – **Computational Linguistics**
 – **Natural Language Engineering**
 – **ICSLP**: International Conference on Spoken Language Processing
 – **EUROSPEECH**: European Conference on Speech Communication and Technology
 – **ICASSP**: IEEE International Conference on Acoustics, Speech, Signal processing
 – **Speech Communication**
 – **Computer Speech and Language**
 – **IEEE Transactions on Speech and Audio Processing**