Informed Search and Exploration

Reference:
1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Chapter 4
2. S. Russell’s teaching materials
Introduction

• Informed Search
 – Also called heuristic search
 – Use problem-specific knowledge
 – Search strategy: a node (in the fringe) is selected for exploration based on an evaluation function, $f(n)$
 • Estimate of desirability

• Evaluation function generally consists of two parts
 – The path cost from the initial state to a node n, $g(n)$ (optional)
 – The estimated cost of the cheapest path from a node n to a goal node, the heuristic function, $h(n)$
 • If the node n is a goal state $\rightarrow h(n) = 0$
 • Can’t be computed from the problem definition (need experience)
Heuristics

• Used to describe rules of thumb or advise that are generally effective, but not guaranteed to work in every case

• In the context of search, a heuristic is a function that takes a state as an argument and returns a number that is an estimate of the merit of the state with respect to the goal

• Not all heuristic functions are beneficial
 – Should consider the time spent on evaluating the heuristic function
 – Useful heuristics should be computationally inexpensive
Best-First Search

• Choose the most desirable (seemly-best) node for expansion based on evaluation function
 – Lowest cost/highest probability evaluation

• Implementation
 – Fringe is a priority queue in decreasing order of desirability

• Several kinds of best-first search introduced
 – Greedy best-first search
 – A* search
 – Iterative-Deepening A* search
 – Recursive best-first search
 – Simplified memory-bounded A* search

memory-bounded heuristic search
Map of Romania

$h(n)$

Straight-line distance
to Bucharest

- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobrota: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Greedy Best-First Search

• Expand the node that appears to be closest to the goal, based on the heuristic function only

\[f(n) = h(n) = \text{estimate of cost from node } n \text{ to the closest goal} \]

– E.g., the straight-line distance heuristics \(h_{SLD} \) to Bucharest for the route-finding problem
 * \(h_{SLD}(In(Arad)) = 366 \)

• “greedy” – at each search step the algorithm always tries to get close to the goal as it can
Greedy Best-First Search (cont.)

- Example 1: the route-finding problem
Greedy Best-First Search (cont.)

- Example 1: the route-finding problem
Greedy Best-First Search (cont.)

- Example 1: the route-finding problem

– The solution is not optimal (?)
Greedy Best-First Search (cont.)

- Example 2: the 8-puzzle problem

2 + 0 + 0 + 0 + 1 + 1 + 2 + 0 = 6 (Manhattan distance)
Greedy Best-First Search (cont.)

- Example 2: the 8-puzzle problem (cont.)

![Diagram of the 8-puzzle problem](image)

Figure 11.6 Applying best-first search to the 8-puzzle: (a) initial configuration; (b) final configuration; and (c) states resulting from the first four steps of best-first search. Each state is labeled with its h-value (that is, the Manhattan distance from the state to the final state).
Properties of Greedy Best-First Search

• Prefer to follow a single path all the way to the goal, and will back up when dead end is hit (like DFS)
 – Also have the possibility to go down infinitely

• Is neither optimal nor complete
 – Not complete: could get stuck in loops
 • E.g., finding path from Iasi to Fagars

• Time and space complexity
 – Worse case: $O(b^m)$
 – But a good heuristic function could give dramatic improvement
A* Search

- Pronounced as “A-star search”

- Expand a node by evaluating the path cost to reach itself, $g(n)$, and the estimated path cost from it to the goal, $h(n)$
 - Evaluation function

$$f(n) = g(n) + h(n)$$

$g(n) =$ path cost so far to reach n
$h(n) =$ estimated path cost to goal from n
$f(n) =$ estimated total path cost through n to goal

- Uniform-cost search + greedy best-first search?
- Avoid expanding nodes that are already expansive
A* Search (cont.)

- A* is optimal if the heuristic function $h(n)$ never overestimates
 - Or say “if the heuristic function is admissible”
 - E.g. the straight-line-distance heuristics are admissible

$$h(n) \leq h^*(n),$$
where $h^*(n)$ is the true path cost from n to goal

Finding the shortest-path goal
A* Search (cont.)

- Example 1: the route-finding problem
A* Search (cont.)

- Example 1: the route-finding problem
A* Search (cont.)

- Example 1: the route-finding problem
A* Search (cont.)

- Example 1: the route-finding problem
A* Search (cont.)

- Example 1: the route-finding problem

```
+ Arad
  - Sibiu 646 = 280 + 366
  - Fagaras 671 = 291 + 380
  - Oradea
  - Rimnicu Vlaicu

+ Sibiu
  - Arad
  - Bucharest 591 = 338 + 253

+ Bucharest

+ Oradea

+ Timisoara 447 = 118 + 329

+ Zerind 449 = 75 + 374
```

```
+ Craiova 526 = 366 + 160

+ Pitesti 553 = 300 + 253

+ Sibiu

+ Craiova 615 = 455 + 160

+ Bucharest 418 = 418 + 0

+ Rimnicu Vlaicu 607 = 414 + 193
```
A* Search (cont.)

- Example 2: the state-space just represented as a tree

Finding the longest-path goal

\[h(n) \geq h^*(n) \]

Evaluation function of node \(n \):

\[f(n) = g(n) + h(n) \]

<table>
<thead>
<tr>
<th>Node</th>
<th>(g(n))</th>
<th>(h(n))</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>G</td>
<td>11</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>L1</td>
<td>9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>L2</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>L3</td>
<td>12</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>L4</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Consistency of A* Heuristics

• A heuristic h is consistent if
 \[h(n) \leq c(n, a, n') + h(n') \]
 – A stricter requirement on h

• If h is consistent (monotonic)
 \[
 f(n') = g(n') + h(n') \\
 = g(n) + c(n, a, n') + h(n') \\
 \geq g(n) + h(n) \\
 \geq f(n)
 \]
 – I.e., $f(n)$ is nondecreasing along any path during search

Finding the shortest-path goal

, where $h(\cdot)$ is the straight-line distance to the nearest goal
Contours of the Evaluation Functions

- Fringe (leaf) nodes expanded in concentric contours

- Uniformed search \((\forall n, h(n)=0)\)
 - Bands circulate around the initial state

- A* search
 - Bands stretch toward the goal and is narrowly focused around the optimal path if more accurate heuristics were used
Contours of the Evaluation Functions (cont.)

• If G is the optimal goal

 – A^* search expands all nodes with $f(n) < f(G)$

 – A^* search expands some nodes with $f(n) = f(G)$

 – A^* expands no nodes with $f(n) > f(G)$
Optimality of A* Search

- A* search is optimal
- Proof
 - Suppose some suboptimal goal G_2 has been generated and is in the fringe (queue)
 - Let n be an unexpanded node on a shortest path to an optimal goal G (suppose n is also in the fringe)

\[
\begin{align*}
 f(G_2) &= g(G_2) & \text{since } h(G_2) = 0 \\
 &> g(G) (= g(n) + h^*(n)) & \text{since } G_2 \text{ is suboptimal} \\
 &\geq f(n) (= g(n) + h(n)) & \text{since } h \text{ is admissible } (h(n) \leq h^*(n)) \\
 \end{align*}
\]

- A* will never select G_2 for expansion since $f(G_2) > f(n)$
Optimality of A* Search (cont.)

• Another proof
 – Suppose when algorithm terminates, G_2 is a complete path (a solution) on the top of the fringe and a node n that stands for a partial path presents somewhere on the fringe. There exists a complete path G passing through n, which is not equal to G_2 and is optimal (with the lowest path cost)

1. G is a complete which passes through node n, $f(G) \geq f(n)$
2. Because G_2 is on the top of the fringe, $f(G_2) \leq f(n) \leq f(G)$
3. Therefore, it makes contrariety !!

• A* search is optimally efficient
 – For any given heuristic function, no other optimal algorithms is guaranteed to expand fewer nodes than A*
Completeness of A* Search

- A* search is complete
 - If every node has a finite branching factor
 - If there are finitely many nodes with $f(n) \leq f(G)$

Proof:
Because A* adds bands (expands nodes) in order of increasing f, it must eventually reach a band where f is equal to the path to a goal state.

- To Summarize again

 * If G is the optimal goal
 - A* expands all nodes with $f(n) < f(G)$
 - A* expands some nodes with $f(n) = f(G)$
 - A* expands no nodes with $f(n) > f(G)$
Complexity of A* Search

• Time complexity: $O(b^d)$

• Space complexity: $O(b^d)$
 – Keep all nodes in memory
 – Not practical for many large-scale problems

• Theorem
 – The search space of A* grows exponentially unless the error in the heuristic function grows no faster than the logarithm of the actual path cost

\[
|h(n) - h^*(n)| \leq O(\log h^*(n))
\]
Memory-bounded Heuristic Search

• Iterative-Deepening A* search

• Recursive best-first search

• Simplified memory-bounded A* search
Iterative Deepening A* Search (IDA*)

- The idea of iterative deepening was adapted to the heuristic search context to reduce memory requirements.

- At each iteration, DFS is performed by using the f-cost ($g + h$) as the cutoff rather than the depth.
 - E.g., the smallest f-cost of any node that exceeded the cutoff on the previous iteration.
Iterative Deepening A* Search (cont.)

function IDA*(problem) returns a solution sequence

inputs: problem, a problem
static: f-limit, the current f-COST limit
root, a node

root ← MAKE-NODE(INITIAL-STATE[problem])
f-limit ← f-COST(root)

loop do
 solution, f-limit ← DFS-COUREN(root, f-limit)
 if solution is non-null then return solution
 if f-limit = ∞ then return failure; end

function DFS-COUREN(node, f-limit) returns a solution sequence and a new f-COST limit

inputs: node, a node
f-limit, the current f-COST limit
static: next-f, the f-COST limit for the next contour, initially ∞

if f-COST[node] > f-limit then return null, f-COST[node]
if GOAL-TEST[problem](STATE[node]) then return node, f-limit
for each node s in SUCCESSORS(node) do
 solution, new-f ← DFS-COUREN(s, f-limit)
 if solution is non-null then return solution, f-limit
 next-f ← MIN(next-f, new-f); end
return null, next-f
Properties of IDA*

• IDA* is complete and optimal

• Space complexity: \(O(bf(G)/\delta) \approx O(bd) \)
 – \(\delta \) : the smallest step cost
 – \(f(G) \): the optimal solution cost

• Time complexity: \(O(\alpha bd) \)
 – \(\alpha \) : the number of distinct \(f \) values smaller than the optimal goal

• Between iterations, IDA* retains only a single number – the \(f \) -cost

• IDA* has difficulties in implementation when dealing with real-valued cost
Recursive Best-First Search (RBFS)

- Attempt to mimic best-first search but use only linear space
 - Can be implemented as a recursive algorithm
 - Keep track of the f-value of the best alternative path from any ancestor of the current node
 - If the current node exceeds the limit, then the recursion unwinds back to the alternative path
 - As the recursion unwinds, the f-value of each node along the path is replaced with the best f-value of its children
Recursive Best-First Search (cont.)

- Example: the route-finding problem

(a) After expanding Arad, Sibiu, and Rimnicu Vilcea
Recursive Best-First Search (cont.)

- Example: the route-finding problem

(b) After unwinding back to Sibiu and expanding Fagaras
Recursive Best-First Search (cont.)

- Example: the route-finding problem

(c) After switching back to Rimnicu Vilcea and expanding Pitesti

Re-expand the forgotten nodes (subtree of Rimnicu Vilcea)
Recursive Best-First Search (cont.)

- Algorithm

function `RECURSIVE-BEST-FIRST-SEARCH(problem)` returns a solution, or failure

```
RBFS(problem, MAKE-NODE(INITIAL-STATE[problem]), ∞)
```

function `RBFS(problem, node, f-limit)` returns a solution, or failure and a new \(f \)-cost limit

```
if GOAL-TEST[problem](state) then return node

successors ← EXPAND(node, problem)

if successors is empty then return failure, ∞

for each s in successors do

\[ f[s] ← \max(g(s) + h(s), f[node]) \]

repeat

\[ \text{best} ← \text{the lowest } f \text{-value node in successors} \]

if \( f[\text{best}] > \text{f-limit} \) then return failure, \( f[\text{best}] \)

\[ \text{alternative} ← \text{the second-lowest } f \text{-value among successors} \]

```
result, \(f[\text{best}] \) ← RBFS(problem, best, min(f-limit, alternative))
```

if result ≠ failure then return result
```
```
Properties of RBFS

• RBFS is complete and optimal

• Space complexity: $O(bd)$

• Time complexity: worse case $O(b^d)$
  – Depend on the heuristics and frequency of “mind change”
  – The same states may be explored many times
Simplified Memory-Bounded A* Search (SMA*)

• Make use of all available memory $M$ to carry out A*

• Expanding the best leaf like A* until memory is full

• When full, drop the worst leaf node (with highest $f$-value)
  – Like RBFS, backup the value of the forgotten node to its parent if it is the best among the subtree of its parent
  – When all children nodes were deleted/dropped, put the parent node to the fringe again for further expansion
Simplified Memory-Bounded A* Search (cont.)

function \text{SMA}^*(\text{problem}) \text{ returns} \text{ a solution sequence} \\
\text{inputs: problem, a problem} \\
\text{static: Queue, a queue of nodes ordered by f-cost} \\

\text{Queue} \leftarrow \text{Make-Queue}(\{\text{Make-Node(Initial-State[problem])}\}) \\
\text{loop do} \\
\hspace{1em} \text{if Queue is empty then return failure} \\
\hspace{1em} n \leftarrow \text{deepest least-f-cost node in Queue} \\
\hspace{1em} \text{if Goal-Test}(n) \text{ then return success} \\
\hspace{1em} s \leftarrow \text{Next-Successor}(n) \\
\hspace{1em} \text{if } s \text{ is not a goal and is at maximum depth then} \\
\hspace{2em} f(s) \leftarrow \infty \\
\hspace{1em} \text{else} \\
\hspace{2em} f(s) \leftarrow \text{Max}(f(n), g(s)+h(s)) \\
\hspace{1em} \text{if all of } n \text{'s successors have been generated then} \\
\hspace{2em} \text{update } n \text{'s } f \text{-cost and those of its ancestors if necessary} \\
\hspace{1em} \text{if Successors}(n) \text{ all in memory then remove } n \text{ from Queue} \\
\hspace{1em} \text{if memory is full then} \\
\hspace{2em} \text{delete shallowest, highest-f-cost node in Queue} \\
\hspace{2em} \text{remove it from its parent's successor list} \\
\hspace{2em} \text{insert its parent on Queue if necessary} \\
\hspace{1em} \text{insert } s \text{ on Queue} \\
\text{end}
Properties of SMA*

• Is complete if $M \geq d$

• Is optimal if $M \geq d$

• Space complexity: $O(M)$

• Time complexity : worse case $O(b^d)$
Admissible Heuristics

• Take the 8-puzzle problem for example
  – Two heuristic functions considered here
    • $h_1(n)$: number of misplaced tiles
    • $h_2(n)$: the sum of the distances of the tiles from their goal positions (tiles can move vertically, horizontally), also called Manhattan distance or city block distance

$\begin{bmatrix} 7 & 2 & 4 \\ 5 & 6 & \hline \end{bmatrix}$ \hspace{1cm} $\begin{bmatrix} 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}$

Start State \hspace{1cm} Goal State

• $h_1(n)$: 8
• $h_2(n)$: $3+1+2+2+2+3+3+2=18$
• Take the 8-puzzle problem for example
  – Comparison of IDS and A*

<table>
<thead>
<tr>
<th>d</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
<td>2.87</td>
<td>1.48</td>
<td>1.45</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
<td>2.80</td>
<td>1.33</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
<td>2.79</td>
<td>1.38</td>
<td>1.22</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
<td>2.78</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
<td>2.83</td>
<td>1.44</td>
<td>1.23</td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>1301</td>
<td>211</td>
<td>–</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>18</td>
<td>–</td>
<td>3056</td>
<td>363</td>
<td>–</td>
<td>1.46</td>
<td>1.26</td>
</tr>
<tr>
<td>20</td>
<td>–</td>
<td>7276</td>
<td>676</td>
<td>–</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>22</td>
<td>–</td>
<td>18094</td>
<td>1219</td>
<td>–</td>
<td>1.48</td>
<td>1.28</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>39135</td>
<td>1641</td>
<td>–</td>
<td>1.48</td>
<td>1.26</td>
</tr>
</tbody>
</table>

**Figure 4.8** Comparison of the search costs and effective branching factors for the **Iterative-Deepening-Search** and $A^*$ algorithms with $h_1, h_2$. Data are averaged over 100 instances of the 8-puzzle, for various solution lengths.
Dominance

- For two heuristic functions $h_1$ and $h_2$ (both are admissible), if $h_2(n) \geq h_1(n)$ for all nodes $n$
  - Then $h_2$ dominates $h_1$ and is better for search
  - A* using $h_2$ will not expand more node than A* using $h_1$
Inventing Admissible Heuristics

• Relaxed Problems
  – The search heuristics can be achieved from the relaxed versions the original problem
    • Key point: the optimal solution cost to a relaxed problem is an admissible heuristic for the original problem (not greater than the optimal solution cost of the original problem)

– Example 1: the 8-puzzle problem
  • If the rules are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
  • If the rules are relaxed so that a tile can move any adjacent square, then $h_2(n)$ gives the shortest solution
Inventing Admissible Heuristics (cont.)

– Example 2: the speech recognition problem

Original Problem (keyword spotting)

Relaxed Problem (used for heuristic calculation)

Note: if the relaxed problem is hard to solve, then the values of the corresponding heuristic will be expansive to obtain
Inventing Admissible Heuristics (cont.)

- **Composite Heuristics**
  - Given a collection of admissible heuristics \( h_1, h_2, \ldots, h_m \), none of them dominates any of others
  
  \[
  h(n) = \max \{ h_1(n), h_2(n), \ldots, h_m(n) \}
  \]

- **Subproblem Heuristics**
  - The cost of the optimal solution of the subproblem is a lower bound on the cost of the complete problem

---

**Diagram:**

- **Start State**
  - Grid with numbers 1, 2, 3, 4

- **Goal State**
  - Grid with numbers 1, 2
Inventing Admissible Heuristics (cont.)

• Inductive Learning
  – E.g., the 8-puzzle problem

<table>
<thead>
<tr>
<th>$x_a(n)$</th>
<th>$x_a(n)$</th>
<th>$h'(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

$h'(n) = C_a \cdot x_a(n) + C_b \cdot x_b(n)$

$C_a = ? \quad C_b = ?$

$x_a(n)$: number of misplaced tiles
$x_b(n)$: number of pairs of adjacent tiles that are adjacent in the goal state
Tradeoffs

Search Effort vs. Heuristic Computation

- Relaxation of problem for heuristic computation

Time vs. Search Effort

Heuristic Computation

Relaxation of problem for heuristic computation
Iterative Improvement Algorithms

• In many optimization, **path to solution is irrelevant**
  – E.g., 8-queen, VLSI layout, TSP etc., for finding optimal configuration
  – The goal state itself is the solution
  – The state space is a complete configuration

• In such case, iterative improvement algorithms can be used
  – Start with a complete configuration (represented by a single “current” state)
  – Make modifications to improve the quality
Iterative Improvement Algorithms (cont.)

- Example: the $n$-queens problem
  - Put $n$ queens on an $nxn$ board with no queens on the same row, column, or diagonal
  - Move a queen to reduce number of conflicts

\[ (4, 3, 4, 3) \rightarrow (4, 3, 4, 2) \rightarrow (4, 1, 4, 2) \]

5 conflicts → 3 conflicts → 1 conflict
Iterative Improvement Algorithms (cont.)

• Example: the traveling salesperson problem (TSP)
  – Find the shortest tour visiting all cities exactly one
  – Start with any complete tour, perform pairwise exchanges
Iterative Improvement Algorithms (cont.)

- **Local search algorithms** belong to iterative improvement algorithms
  - Use a current state and generally move only to the neighbors of that state
  - Properties
    - Use very little memory
    - Applicable to problems with large or infinite state space

- Local search algorithms to be considered
  - Hill-climbing search
  - Simulated annealing
  - Local beam search
  - Genetic algorithms
Iterative Improvement Algorithms (cont.)

- Completeness or optimality of the local search algorithms should be considered

![Graph](image)

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Hill-Climbing Search

• “Like climbing Everest in the thick fog with amnesia”

• Choose any successor with a higher value (of objective or heuristic functions) than current state
  – Choose $\text{Value[next]} \geq \text{Value[current]}$

```
function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
 neighbor, a node

 current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
 neighbor ← a highest-valued successor of current
 if VALUE[neighbor] \leq VALUE[current] then return STATE[current]
 current ← neighbor
```

• Also called greedy local search
Hill-Climbing Search (cont.)

- Example: the 8-queens problem
  - The heuristic cost function is the number of pairs of queens that are attacking each other

\[ h = 3 + 4 + 2 + 3 + 2 + 2 + 1 = 17 \] (calculated from left to right)

- Best successors have \( h = 12 \)
  (when one of queens in Column 2, 5, 6, and 7 is moved)
Hill-Climbing Search (cont.)

- Problems:
  - Local maxima: search halts prematurely
  - Plateaus: search conducts a random walk
  - Ridges: search oscillates with slow progress (resulting in a set of maxima)

- Solution? sideways move?

Neither complete nor optimal

8-queens stuck in a local minimum

Ridges cause oscillation
Hill-Climbing Search (cont.)

• Several variants
  – Stochastic hill climbing
    • Choose at random from among the uphill moves
  – First-choice hill climbing
    • Generate successors randomly until one that is better than current state is generated
    • A kind of stochastic hill climbing
  – Random-restart hill climbing
    • Conduct a series of hill-climbing searches from randomly generated initial states
    • Stop when goal is found
Simulated Annealing Search

• Combine hill climbing with a random walk to yield both efficiency and completeness
  – Random walk: moving to a successor chosen uniformly at random from the set of successors

• Steps for Simulated Annealing Search
  – Pick a random move at each iteration instead of picking the best move
  – If the move improve the situation → accept!
    \[ \Delta E = \text{VALUE}[\text{next}] - \text{VALUE}[\text{current}] \]
  – Otherwise (\( \Delta E < 0 \)), have a probability (\( e^{\Delta E / T} \)) to move to a worse state

  • The probability decreases exponentially as \( \Delta E \) decreases
  • The probability decreases exponentially as \( T \) (temperature) goes down (as time goes by)
Simulated Annealing Search (cont.)

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem
        schedule, a mapping from time to "temperature"

local variables: current, a node
                next, a node
                T, a "temperature" controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])
for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] − VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T}

Be negative here!
Local Beam Search

• Keep track of $k$ states rather than just one
  – Begin with $k$ randomly generated states
  – All successors of the $k$ states are generated at each iteration
    • If any one is a goal → halt!
    • Otherwise, select $k$ best successors from them and continue the iteration

  – Information is passed/exchanged among these $k$ search threads
    • Compared to the random-restart search
      – Each process run independently
Local Beam Search (cont.)

• Problem
  – The k states may quickly become concentrated in a small region of the state space
  – Like an expensive version of hill climbing

• Solution
  – A variant version called stochastic beam search
    • Choose a given successor at random with a probability in increasing function of its value
    • Resemble the process of natural selection
Genetic Algorithms (GAs)

• Developed and patterned after biological evolution

• Also regarded as a variant of stochastic beam search
  – Successors are generated from multiple current states
    • A population of potential solutions are maintained
  – States are often described by bit strings (like chromosomes) whose interpretation depends on the applications
    • Binary-coded or alphabet
      (11, 6, 9) \rightarrow (101101101001)
    • Encoding: translate problem-specific knowledge to GA framework
  – Search begins with a population of randomly generated initial states
Genetic Algorithms (cont.)

• The successor states are generated by combining two parent states, rather than by modifying a single state
  – Current population/states are evaluated with a fitness function and selected probabilistically as seeds for producing the next generation
    • Fitness function: the criteria for ranking
    • Recombine parts of the best (most fit) currently known states
    • Generate-and-test beam search

• Three phases of GAs
  – Selection $\rightarrow$ Crossover $\rightarrow$ Mutation
Genetic Algorithms (cont.)

- **Selection**
  - Determine which parent strings (chromosomes) participate in producing offspring for the next generation
  - The selection probability is proportional to the fitness values

\[
Pr(h_i) = \frac{\text{Fitness}(h_i)}{\sum_{j=1}^{p} \text{Fitness}(h_j)}
\]

- Some strings (chromosomes) would be selected more than once
Genetic Algorithms (cont.)

• Two most common (genetic) operators which try to mimic biological evolution are performed at each iteration
  – Crossover
    • Produce new offspring by crossing over the two mated parent strings at randomly (a) chosen crossover point(s) (bit position(s))
    • Selected bits copied from each parent
  – Mutation
    • Often performed after crossover
    • Each (bit) location of the randomly selected offspring is subject to random mutation with a small independent probability

• Applicable problems
  – Function approximation & optimization, circuit layout etc.
Genetic Algorithms (cont.)

- Encoding Schemes
- Fitness Evaluation
- Testing the End of the Algorithm
  - Yes
  - No: Parent Selection
  - Crossover Operators
  - Mutation Operators

Halt
Genetic Algorithms (cont.)

- Example 1: the 8-queens problem

\[
\text{number of non attacking pairs of queens} = \sum_{j=1}^{P} \frac{\text{Fitness}(h_j)}{\text{Fitness}(h_i)} \times \Pr(h_i)
\]

![Diagram of the 8-queens problem with genetic algorithm steps](image)
Genetic Algorithms (cont.)

- **Example 2: common crossover operators**

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>11111000000</td>
<td>11101010101</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>00001001000</td>
</tr>
</tbody>
</table>

**Single-point crossover:**

- **Two-point crossover:**

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>00111110000</td>
<td>11001011000</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>00101000101</td>
</tr>
</tbody>
</table>

- **Uniform crossover:**

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Crossover Mask</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>10011010011</td>
<td>10001000100</td>
</tr>
<tr>
<td>00001010101</td>
<td></td>
<td>01101011001</td>
</tr>
</tbody>
</table>

- **Point mutation:**

<table>
<thead>
<tr>
<th>Initial strings</th>
<th>Offspring</th>
</tr>
</thead>
<tbody>
<tr>
<td>11101001000</td>
<td>11101011000</td>
</tr>
</tbody>
</table>
Genetic Algorithms (cont.)

- Example 3: HMM adaptation in Speech Recognition

\[
\Pr(h_i) = \frac{\exp \left( \frac{P(O|h_i)}{T} \right)}{\sum_{j=1}^{p} \exp \left( \frac{P(O|h_j)}{T} \right)}
\]

sequences of HMM mean vectors

\[
h_1 = (k_1, k_2, k_3, \ldots, k_D)
\]

\[
s_1 = (k_1 \cdot i_f + m_1 \cdot (1-i_f), k_2 \cdot i_f + m_2 \cdot (1-i_f), m_3 \cdot i_f + k_3 \cdot (1-i_f), \ldots, m_D \cdot i_f + k_D \cdot (1-i_f))
\]

\[
h_2 = (m_1, m_2, m_3, \ldots, m_D)
\]

\[
s_2 = (m_1 \cdot i_f + k_1 \cdot (1-i_f), m_2 \cdot i_f + k_2 \cdot (1-i_f), k_3 \cdot i_f + m_3 \cdot (1-i_f), \ldots, k_D \cdot i_f + m_D \cdot (1-i_f))
\]

crossover (reproduction)

\[
g_d \rightarrow \hat{g}_d = g_d + \varepsilon \cdot \sigma_d
\]

mutation
Genetic Algorithms (cont.)

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
  new_population ← empty set
  loop for i from 1 to SIZE(population) do
    x ← RANDOM-SELECTION(population, FITNESS-FN)
    y ← RANDOM-SELECTION(population, FITNESS-FN)
    child ← REPRODUCE(x, y)
    if (small random probability) then child ← MUTATE(child)
    add child to new_population
  population ← new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

function REPRODUCE(x, y) returns an individual
inputs: x, y, parent individuals

n ← LENGTH(x)
c ← random number from 1 to n
return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
Genetic Algorithms (cont.)

• Main issues
  – Encoding schemes
    • Representation of problem states
  – Size of population
    • Too small → converging too quickly, and vice versa
  – Fitness function
    • The objective function for optimization/maximization
    • Ranking members in a population
Properties of GAs

• GAs conduct a randomized, parallel, hill-climbing search for states that optimize a predefined fitness function

• GAs are based an analogy to biological evolution

• It is not clear whether the appeal of GAs arises from their performance or from their aesthetically pleasing origins in the theory of evolution
Local Search in Continuous Spaces

- Most real-world environments are continuous
  - The successors of a given state could be infinite

- Example:

Place three new airports anywhere in Romania, such that the sum of squared distances from each cities to its nearest airport is minimized

\[
\begin{align*}
x_1, y_1 \\
x_2, y_2 \\
x_3, y_3
\end{align*}
\]

Objective function: \( f = ? \)
Local Search in Continuous Spaces (cont.)

- Two main approaches to find the maximum or minimum of the objective function by taking the gradient:
  1. Set the gradient to be equal to zero (=0) and try to find the closed form solution.
     - If it exists $\rightarrow$ lucky!
  2. If no closed form solution exists
     - Perform gradient search!
Local Search in Continuous Spaces (cont.)

- **Gradient Search**
  - A hill climbing method
  - Search in the space defined by the real numbers
  - Guaranteed to find local maximum
  - Not Guaranteed to find global maximum

\[
\hat{x} = x + \alpha \nabla f(x) = x + \alpha \frac{df(x)}{dx}
\]

\[
\hat{x} = x - \alpha \nabla f(x) = x - \alpha \frac{df(x)}{dx}
\]
Online Search

• Offline search mentioned previously
  – Nodes expansion involves simulated rather real actions
  – Easy to expand a node in one part of the search space and then immediately expand a node in another part of the search space

• Online search
  – Expand a node physically occupied
    • The next node expanded (except when backtracking) is the child of previous node expanded
  – Traveling all the way across the tree to expand the next node is costly
Online Search (cont.)

- Algorithms for online search
  - Depth-first search
    - If the actions of agent is reversible (backtracking is allowable)
  - Hill-climbing search
    - However random restarts are prohibitive
  - Random walk
    - Select at random one of the available actions from current state
    - Could take exponentially many steps to find the goal