Query Operations

Berlin Chen
Department of Computer Science & Information Engineering
National Taiwan Normal University

Reference:
1. Modern Information Retrieval. chapter 5
Introduction

- Users have no detailed knowledge of
 - The collection makeup
 - The retrieval environment

- Scenario of (Web) IR
 1. An initial (naive) query posed to retrieve relevant docs
 2. Docs retrieved are examined for relevance and a new improved query formulation is constructed and posed again

Expand the original query with new terms (query expansion) and reweight the terms in the expanded query (term weighting)
Query Reformulation

• Approaches through query expansion (QE) and terming weighting
 – Feedback information from the user
 • Relevance feedback
 – With vector, probabilistic models et al.
 – Information derived from the set of documents initially retrieved (called local set of documents)
 • Local analysis
 – Local clustering, local context analysis
 – Global information derived from document collection
 • Global analysis
 – Similar thesaurus or statistical thesaurus
Relevance Feedback

• User (or Automatic) Relevance Feedback
 – The most popular query reformation strategy

• Process for user relevance feedback
 – A list of retrieved docs is presented
 – User or system exam them (e.g. the top 10 or 20 docs) and marked the relevant ones
 – Important terms are selected from the docs marked as relevant, and the importance of them are enhanced in the new query formulation
User Relevance Feedback

• Advantages
 – Shield users from details of query reformulation
 • User only have to provide a relevance judgment on docs
 – Break down the whole searching task into a sequence of small steps
 – Provide a controlled process designed to emphasize some terms (relevant ones) and de-emphasize others (non-relevant ones)

For **automatic relevance feedback**, the whole process is done in an implicit manner
Query Expansion and Term Reweighting for the Vector Model

• Assumptions
 – Relevant docs have term-weight vectors that resemble each other
 – Non-relevant docs have term-weight vectors which are dissimilar from the ones for the relevant docs
 – The reformulated query gets to closer to the term-weight vector space of relevant docs
Query Expansion and Term Reweighting for the Vector Model (cont.)

• Terminology

Relevant Docs C_r Answer Set

D_r Relevant Docs identified by the user D_n Non-relevant Docs identified by the user

Doc Collection with size N
Query Expansion and Term Reweighting for the Vector Model (cont.)

- **Optimal Condition**
 - The complete set of relevant docs C_r to a given query q is known in advance

 $$\bar{q}_{opt} = \frac{1}{|C_r|} \sum_{\forall d_i \in C_r} \bar{d}_i - \frac{1}{N - |C_r|} \sum_{\forall d_j \notin C_r} \bar{d}_j$$

 - **Problem**: the complete set of relevant docs C_r are not known a priori
 - **Solution**: formulate an initial query and incrementally change the initial query vector based on the known relevant/non-relevant docs
 - User or automatic judgments

Elements in the final vector representation should be kept nonnegative
Query Expansion and Term Reweighting for the Vector Model (cont.)

- **In Practice**

1. **Standard_Rocchio**

 \[
 \tilde{q}_m = \alpha \cdot \tilde{q} + \frac{\beta}{|D_r|} \sum_{d_i \in D_r} \tilde{d}_i - \frac{\gamma}{|D_n|} \sum_{d_j \in D_n} \tilde{d}_j
 \]

 - **modified query**
 - **initial/original query**

2. **Ide-Regular**

 \[
 \tilde{q}_m = \alpha \cdot \tilde{q} + \beta \sum_{d_i \in D_r} \tilde{d}_i - \gamma \sum_{d_j \in D_n} \tilde{d}_j
 \]

3. **Ide_Dec_Hi**

 \[
 \tilde{q}_m = \alpha \cdot \tilde{q} + \beta \sum_{d_i \in D_r} \tilde{d}_i - \gamma \max_{\text{non-relevant}} \left(\tilde{d}_j \right)
 \]

 - The highest ranked non-relevant doc

 Elements in the final vector representation should be kept nonnegative

Rocchio 1965

IR – Berlin Chen 9
Query Expansion and Term Reweighting for the Vector Model (cont.)

• Some Observations
 – Similar results were achieved for the above three approach (Dec-Hi slightly better in the past)
 – Usually, constant β is bigger than γ (why?)

• In Practice (cont.)
 – More about the constants
 • Rocchio, 1971: $\alpha = 1$
 • Ide, 1971: $\alpha = \beta = \gamma = 1$
 • Positive feedback strategy: $\gamma = 0$
Query Expansion and Term Reweighting for the Vector Model (cont.)

• Advantages
 – Simple, good results
 • Modified term weights are computed directly from the retrieved docs

• Disadvantages
 – No optimality criterion
 • Empirical and heuristic
Term Reweighting for the Probabilistic Model

- **Similarity Measure**

\[
\text{sim}(d_j, q) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{P(k_i \mid R)}{1 - P(k_i \mid \overline{R})} + \log \frac{P(k_i \mid R)}{P(k_i \mid \overline{R})} \right]
\]

Binary weights (0 or 1) are used

\[
\text{prob. of observing term } k_i \text{ in the set of relevant docs}
\]

- **Initial Search** (with some assumptions)

 - \(P(k_i \mid R) = 0.5 \): is constant for all indexing terms
 - \(P(k_i \mid \overline{R}) = \frac{n_i}{N} \): approx. by doc freq. of index terms

\[
\text{sim}(d_j, q) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{0.5}{1 - 0.5} + \log \frac{1 - \frac{n_i}{N}}{\frac{n_i}{N}} \right]
\]

\[
= \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \log \frac{N - n_i}{n_i}
\]

Roberston & Sparck Jones 1976
Term Reweighting for the Probabilistic Model (cont.)

- **Relevance feedback** (term reweighting alone)

\[
P(k_i \mid R) = \frac{|D_{r,i}|}{|D_r|} \quad \text{(Relevant docs containing term } k_i) \\
P(k_i \mid \overline{R}) = \frac{n_i - |D_{r,i}|}{N - |D_r|} \quad \text{(Relevant docs)}
\]

\[
sim(d_j, q) \approx \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \left[\log \frac{|D_{r,i}|}{|D_r|} + \log \frac{1 - n_i - |D_{r,i}|}{N - |D_r|} \right] \\
= \sum_{i=1}^{t} w_{i,q} \times w_{i,j} \times \log \left[\frac{|D_{r,i}|}{|D_r| - |D_{r,i}|} \cdot \frac{N - |D_r| - n_i + |D_{r,i}|}{n_i - |D_{r,i}|} \right]
\]

\[
P(k_i \mid R) = \frac{|D_{r,i}| + 0.5}{|D_r| + 1} \\
P(k_i \mid \overline{R}) = \frac{n_i - |D_{r,i}| + 0.5}{N - |D_r| + 1} \\
P(k_i \mid \overline{R}) = \frac{|D_{r,i}| + n_i}{N} \\
P(k_i \mid \overline{R}) = \frac{|D_{r,i}| + 1}{n_i - |D_{r,i}| + n_i} \\
\]

Or
\[
\frac{n_i - |D_{r,i}|}{N - |D_r|}
\]
Term Reweighting for the Probabilistic Model (cont.)

Advantages
- Feedback process is directly related to the derivation of new weights for query terms
- The term reweighting is optimal under the assumptions of term independence and binary doc indexing

Disadvantages
- Document term weights are not taken into account
- Weights of terms in previous query formulations are disregarded
- No query expansion is used
 - The same set of index terms in the original query is reweighted over and over again
A Variant of Probabilistic Term Reweighting

• Differences
 – Distinct initial search assumptions
 – Within-document frequency weight included

• Initial search (assumptions)

\[
sim(d_j, q) \propto \sum_{i=1}^{t} w_{i,q} w_{i,j} F_{i,j,q}
\]

\[
F_{i,j,q} = (C + idf_i) \tilde{f}_{i,j} \quad \tilde{f}_{i,j} = K + (1 + K) \frac{f_{i,j}}{\max(f_{i,j})}
\]

~ Inversed document frequency ~ Term frequency
(normalized with the maximum within-document frequency)

• C and K are adjusted with respect to the doc collection
A Variant of Probabilistic Term Reweighting (cont.)

- **Relevance feedback**

\[
F_{i,j,q} = (C + \log \frac{P(k_i \mid R)}{1 - P(k_i \mid R)} + \log \frac{1 - P(k_i \mid \overline{R})}{P(k_i \mid \overline{R})}) \tilde{f}_{i,j}
\]

\[
P(k_i \mid R) = \frac{|D_{r,i}| + 0.5}{|D_r| + 1}
\]

\[
P(k_i \mid \overline{R}) = \frac{n_i - |D_{r,i}| + 0.5}{N - |D_r| + 1}
\]
A Variant of Probabilistic Term Reweighting (cont.)

• Advantages
 – The within-doc frequencies are considered
 – A normalized version of these frequencies is adopted
 – Constants C and K are introduced for greater flexibility

• Disadvantages
 – More complex formulation
 – No query expansion (just reweighting of index terms)
Evaluation of Relevance Feedback Strategies

• Recall-precision figures of user reference feedback is unrealistic
 – Since the user has seen the docs during reference feedback

• A significant part of the improvement results from the higher ranks assigned to the set R of seen relevant docs

$$\tilde{q}_m = \alpha \cdot \tilde{q} + \frac{\beta}{|D_r|} \cdot \sum_{\forall d_i \in D_r} d_i - \frac{\gamma}{|D_n|} \cdot \sum_{\forall d_j \in D_n} d$$

– The real gains in retrieval performance should be measured based on the docs not seen by the user yet
Evaluation of Relevance Feedback Strategies (cont.)

• Recall-precision figures relative to the residual collection
 – Residual collection
 • The set of all docs minus the set of feedback docs provided by the user

 – Evaluate the retrieval performance of the modified query \tilde{q}_m considering only the residual collection

 – The recall-precision figures for \tilde{q}_m tend to be lower than the figures for the original query \tilde{q}
 • It’s OK! If we just want to compare the performance of different relevance feedback strategies
Automatic Local/Global Analysis

• Remember that in user relevance feedback cycles
 – Top ranked docs separated into two classes
 • Relevant docs
 • Non-relevant docs
 – Terms in known relevant docs help describe a larger cluster of relevant docs
 • From a “clustering” perspective
 – Description of larger cluster of relevant docs is built iteratively with assistance from the user

Attar and Fraenkel 1977
Automatic Local/Global Analysis (cont.)

- **Alternative approach**: automatically obtain the description for a large cluster of relevant docs
 - Identify terms which are related to the query terms
 - Synonyms
 - Stemming variations
 - Terms are close each other in context
Automatic Local/Global Analysis (cont.)

• Two strategies
 – Global analysis
 • All docs in collection are used to determine a global thesaurus-like structure for QE
 – Local analysis
 • Similar to relevance feedback but without user interference
 • Docs retrieved at query time are used to determine terms for QE
 • Local clustering, local context analysis
QE through Local Clustering

• QE through *Clustering*
 – Build *global structures* such as *association matrices* to quantify term correlations
 – Use the correlated terms for QE
 – *But not always effective in general collections*
 陳水扁 總統 呂秀蓮 綠色矽島 勇哥 吳淑珍 …
 陳水扁 視察 阿里山 小火車

• QE through *Local Clustering*
 – Operate solely on the docs retrieved for the query
 - *Not suitable for Web search*: time consuming
 - *Suitable for intranets*
 • Especially, as the assistance for search information in specialized doc collections like medical (patent) doc collections
QE through Local Clustering (cont.)

• Definition (Terminology)
 – Stem
 • $V(s)$: a non-empty subset of words which are grammatical variants of each other
 – E.g. \{polish, polishing, polished\}
 • A canonical form s of $V(s)$ is called a stem
 – e.g., $s = \text{polish}$
 – For a given query
 • Local doc set D_i: the set of documents retrieved
 • local vocabulary V_i: the set of all distinct words (stems) in the local document set
 • S_i: the set of all distinct stem derived from V_i
Strategies for Building Local Clusters

• **Association clusters**
 – Consider the *co-occurrence* of stems (terms) inside docs

• **Metric Clusters**
 – Consider the *distance* between two terms in a doc

• **Scalar Clusters**
 – Consider the *neighborhoods* of two terms
 • Do they have similar neighborhoods?
Strategies for Building Local Clusters (cont.)

• **Association clusters**
 – Based on the **co-occurrence** of stems (terms) inside docs
 • Assumption: stems co-occurring frequently inside docs have a **synonymity** association
 – An association matrix with $|S_i|$ rows and $|D_i|$ columns
 • Each entry f_{s_i, d_j} the frequency of a stem s_i in a doc d_j
Strategies for Building Local Clusters (cont.)

• **Association clusters**
 – Each entry in the stem-stem association matrix stands for the **correlation factor** between two stems.

 \[
 C_{u,v} = \sum_{d, j \in D_l} f_{s_u,j} \times f_{s_v,j}
 \]
 – The unnormalized form

 \[
 S_{u,v} = C_{u,v}
 \]
 – Prefer terms with **high** frequency
 – The normalized form (ranged from 0 to 1)

 \[
 S_{u,v} = \frac{C_{u,v}}{C_{u,u} + C_{v,v} - C_{u,v}}
 \]
 – Prefer terms with **low** frequency
Strategies for Building Local Clusters (cont.)

- **Association clusters**
 - The u-th row in the association matrix stands all the associations for the stem s_u
 - A **local association cluster** $S_u(m)$
 - Defined as a set of stems s_v ($v \neq u$) with their respective values $s_{u,v}$ being the top m ones in the u-th row of the association matrix

 - Given a query, only the association clusters of query terms are calculated
 - The stems (terms) belong to the association clusters are selected and added the query formulation
Strategies for Building Local Clusters (cont.)

- **Association clusters**
 - Other measures for term association
 - Dice coefficient
 \[
 s_{u,v} = \frac{2 \times c_{u,v}}{c_{u,u} + c_{v,v}}
 \]
 - Mutual information
 \[
 s_{u,v} = MI(k_u, k_v) = \log \frac{P(k_u, k_v)}{P(k_u)P(k_v)} = \log \frac{n_{u,v}}{N} \times \frac{N}{n_u \times n_v}
 \]
STRATEGIES FOR BUILDING LOCAL CLUSTERS (CONT.)

- **Metric Clusters**

 - Take into consideration the distance between two terms in a doc while computing their correlation factor.

 \[
 c_{u,v} = \frac{1}{d_{j \in D_1, k_i \in V(s_u), k_g \in V(s_v)} r_{j}(k_i, k_g)} \sum_{k_i \in V(s_u), k_g \in V(s_v)} \sum_{d_j \in D_1} \sum_{k_i \in V(s_u), k_g \in V(s_v)} r_{j}(k_i, k_g)
 \]

 - The entry of the **local stem-stem metric correlation** matrix \(S \) can be expressed as:

 - The unnormalized form:
 \[
 S_{u,v} = c_{u,v}
 \]
 - The normalized form:
 \[
 S_{u,v} = \frac{c_{u,v}}{|V(s_u)| \times |V(s_v)|}
 \]

 The local association clusters of stems can be similarly defined, ranged from 0 to 1.
Strategies for Building Local Clusters (cont.)

- **Scalar Clusters**
 - **Idea**: two stems (terms) with similar neighborhoods have some synonymity relationship
 - Derive the synonymity relationship between two stems by comparing the sets $S_u(m)$ and $S_v(m)$

\[
S_{u,v} = \frac{\vec{S}_u \cdot \vec{S}_v}{|\vec{S}_u| \times |\vec{S}_u|}
\]

Use Cosine measure to derive a new scalar association matrix
QE through Local Clustering (cont.)

• Iterative Search Formulation
 – “neighbor”: a stem s_u belongs to a cluster associated to another term s_v is said to be a neighbor of s_v
 • Not necessarily synonyms in the grammatical sense
 – Stems belonging to clusters associated to the query stems (terms) can be used to expand the original query

stems s_u as a neighbor or the stem s_v
QE through Local Clustering (cont.)

• Iterative Search Formulation
 – Query expansion
 • For each stem $s_v \in q$, select m neighbors stems from the cluster $S_v(m)$ and add them to the query
 • The additional neighbor stems will retrieve new relevant docs

 – The impact of normalized or unnormalized clusters
 • **Unnormalized**: group stems with high frequency
 • **Normalized**: group rare stems
 • **Union** of them provides a better representation of stem (term) correlations

\[
e.g., \quad s_{u,v} = \frac{c_{u,v}}{c_{u,u} + c_{v,v} - c_{u,v}}
\]
Local Context Analysis

• **Local Analysis**
 – Based on the set of docs retrieved for the original query
 – Based on term (stem) correlation inside docs
 – Terms are neighbors of each query terms are used to expand the query

• **Global Analysis**
 – Based on the whole doc collection
 – The thesaurus for term relationships are built by considering small contexts (e.g. passages) and phrase structures instead of the context of the whole doc
 – Terms closest to the whole query are selected for query expansion

Calculation of term correlations at query time

Pre-calculation of term correlations

Local context analysis combines features from both
Local Context Analysis (cont.)

- Operations of local context analysis
 - **Document concepts**: Noun groups (named *concept* here) from retrieved docs as the units for QE instead of single keywords

 - *Concepts* selected from the top ranked passages (instead of docs) based on their co-occurrence with the whole set of query terms (no stemming)

Xu and Croft 1996
QE through Local Context Analysis

• The operations can be further described in three steps
 – Retrieve the top \(n \) ranked passages using the original query (a doc is segmented into several passages)
 – For each concept \(c \) in the top ranked passages, the similarity \(\text{sim}(q,c) \) between the whole query \(q \) and the concept \(c \) is computed using a variant of tf-idf ranking
 – The top \(m \) ranked concepts are added to the original query \(q \) and appropriately weighted, e.g.
 • Each concept is assigned a weight \(1-0.9x \frac{i}{m} \) (\(i \): the position in rank)
 • Original query terms are stressed by a weight of 2
QE through Local Context Analysis (cont.)

- The similarity between a concept and a query

\[
sim(q, c) = \prod_{k_i \in q} \left(\delta + \frac{\log \left(f(c, k_i) \times idf_c \right)}{\log n} \right)^{idf_i}
\]

Set to 0.1 to avoid zero

\[
f(c, k_i) = \sum_{j=1}^{n} pf_{i,j} \times pf_{c,j}
\]

the no. of passages considered

\[
idf_c = \max \left(1, \frac{\log_{10} \frac{N}{np_c}}{5} \right)
\]

the no. of passages in the collection

\[
idf_i = \max \left(1, \frac{\log_{10} \frac{N}{np_i}}{5} \right)
\]

the no. of passages containing concept c

emphasize the infrequent terms

Frequency of the concept c in passage j
QE based on a Similarity Thesaurus

- Belongs to Global Analysis
- How to construct the similarity thesaurus
 - Term to term relationships rather than term co-occurrences are considered
- How to select term for query expansion
 - Terms for query expansion are selected based on their similarity to the whole query rather the similarities to individual terms

Docs are interpreted as indexing elements here
- Doc frequency within the term vector
- Inverse term frequency

term-doc matrix

Qiu and Frei 1993
QE based on a Similarity Thesaurus (cont.)

• Definition
 – $f_{u,j}$: the frequency of term k_u in document d_j
 – t_j: the number of distinct index terms in document d_j
 – Inverse term frequency

\[
\text{itf}_j = \log \frac{t}{t_j} \quad \text{(doc containing more distinct terms is less important)}
\]

• The weight associated with each entry in the term-doc matrix

\[
w_{u,j} = \frac{\left(0.5 + 0.5 \frac{f_{u,j}}{\max g f_{u,g}}\right) \times \text{itf}_j}{\sqrt{\left(0.5 + 0.5 \frac{f_{u,l}}{\max g f_{u,g}}\right) \times \text{itf}_l}}
\]

Let term vector have a unit norm
QE based on a Similarity Thesaurus (cont.)

• The relationship between two terms k_u and k_v

$$c_{u,v} = \vec{k}_u \cdot \vec{k}_v = \sum_{\forall d_j} w_{u,j} \times w_{v,j}$$

is just a cosine measure? ranged from 0 to 1

– The vector representations are normalized
– The computation is computationally expensive
• There may be several hundred thousands of docs
QE based on a Similarity Thesaurus (cont.)

Concept-based QE

Steps for QE based on a similarity thesaurus

1. Represent the query in the term-concept space

\[\vec{q} = \sum_{k_u \in q} w_{u,q} \times \vec{k}_u \]

2. Based on the global thesaurus, compute a similarity between the each term \(k_v \) and the whole query \(q \)

\[\text{sim}(q, k_v) = \left(\sum_{k_u \in q} w_{u,q} \times \vec{k}_u \right) \cdot \vec{k}_v = \sum_{k_u \in q} w_{u,q} \times c_{u,v} \]

3. Expand the query with the top \(r \) ranked terms according to \(\text{sim}(q,k_v) \)

- The weight assigned to the expansion term

\[w_{v,q'} = \frac{\text{sim}(q, k_v)}{\sum_{k_u \in q} w_{u,q}} = \frac{\sum_{k_u \in q} w_{u,q} \times c_{u,v}}{\sum_{k_u \in q} w_{u,q}} \text{ ranged from 0 to 1} \]
QE based on a Similarity Thesaurus (cont.)

- The term k_v selected for query expansion might be quite close to the whole query while its distances to individual query terms are larger.
QE based on a Similarity Thesaurus (cont.)

- The similarity between query and doc measured in the term-concept space
 - Doc is first represented in the term-concept space
 \[
 \vec{d}_j = \sum_{k_v \in d_j} w_{v,j} \times k_v
 \]
 - Similarity measure
 \[
 sim(q, d_j) \propto \sum_{k_v \in d_j} \sum_{k_u \in q} w_{v,j} \times w_{u,q} \times c_{u,v}
 \]
- Analogous to the formula for query-doc similarity in the generalized vector space model
 - Differences
 » Weight computation
 » Only the top r ranked terms are used here
QE based on a Statistical Thesaurus

- Belongs to Global Analysis

- Global thesaurus is composed of classes which group correlated terms in the context of the whole collection

- Such correlated terms can then be used to expand the original user query
 - The terms selected must be low frequency terms
 - With high discrimination values
QE based on a Statistical Thesaurus (cont.)

• However, it is difficult to cluster low frequency terms
 – To circumvent this problem, we cluster docs into classes instead and use the low frequency terms in these docs to define our thesaurus classes

 – This algorithm must produce small and tight clusters
 • Depend on the cluster algorithm
QE based on a Statistical Thesaurus (cont.)

- **Complete Link Algorithm**
 - Place each doc in a distinct cluster
 - Compute the similarity between all pairs of clusters
 - Determine the pair of clusters \([C_u, C_v]\) with the highest inter-cluster similarity (using the cosine formula)
 - Merge the clusters \(C_u\) and \(C_v\)
 - Verify a stop criterion. If this criterion is not met then go back to step 2
 - Return a hierarchy of clusters

- **Similarity between two clusters is defined as**
 - The minimum of similarities between all pairs of inter-cluster docs
QE based on a Statistical Thesaurus (cont.)

- Example: hierarchy of three clusters

- Higher level clusters represent a looser grouping
 - Similarities decrease as moving up in the hierarchy

\[sim(C_{u+v}, C_z) = 0.11 \]

\[sim(C_u, C_v) = 0.15 \]
QE based on a Statistical Thesaurus (cont.)

• Given the doc cluster hierarchy for the whole collection, the terms that compose each class of the global thesaurus are selected as follows

 – Three parameters obtained from the user

 • TC: Threshold class
 • NDC: Number of docs in class
 • $MIDF$: Minimum inverse doc frequency
QE based on a Statistical Thesaurus (cont.)

– Use the parameter TC as threshold value for determining the doc clusters that will be used to generate thesaurus classes
 • It has to be surpassed by $\text{sim}(C_u, C_v)$ if the docs in the clusters C_u and C_v are to be selected as sources of terms for a thesaurus class

– Use the parameter NDC as a limit on the size of clusters (number of docs) to be considered
 • A low value of NDC might restrict the selection to the smaller clusters
QE based on a Statistical Thesaurus (cont.)

– Consider the set of docs in each doc cluster pre-selected above
 • Only the lower frequency terms are used as sources of terms for the thesaurus classes
 • The parameter \(MIDF \) defines the minimum value of inverse doc frequency for any term which is selected to participate in a thesaurus class

• Given the thesaurus classes have been built, they can be to query expansion
QE based on a Statistical Thesaurus (cont.)

- Example

Doc1 = D, D, A, B, C, A, B, C
Doc2 = E, C, E, A, A, D
Doc3 = D, C, B, B, D, A, B, C, A
Doc4 = A

\[
\begin{align*}
\text{sim}(1,3) &= 0.99 \\
\text{sim}(1,2) &= 0.40 \\
\text{sim}(2,3) &= 0.29 \\
\text{sim}(4,1) &= 0.00 \\
\text{sim}(4,2) &= 0.00 \\
\text{sim}(4,3) &= 0.00
\end{align*}
\]

 IDF:
- \(\text{idf A} = 0.0 \)
- \(\text{idf B} = 0.3 \)
- \(\text{idf C} = 0.12 \)
- \(\text{idf D} = 0.12 \)
- \(\text{idf E} = 0.60 \)

\(q = \text{A E E} \)

Cosine formula with \(tf-idf \) weighting

\(\frac{C_1 \times C_3 \times C_2 \times C_4}{|C_1| \times |C_3| \times |C_2| \times |C_4|} \)

- \(TC = 0.90 \)
- \(NDC = 2.00 \)
- \(MIDF = 0.2 \)

\(q' = \text{A B E E} \)
QE based on a Statistical Thesaurus (cont.)

• Problems
 – Initialization of parameters TC, NDC and $MIDF$
 – TC depends on the collection
 – Inspection of the cluster hierarchy is almost always necessary for assisting with the setting of TC
 – A high value of TC might yield classes with too few terms
 • While a low value of TC yields too few classes
Trends and Research Issues

- **Visual display**
 - Graphical interfaces (2D or 3D) for relevance feedback
 - Quickly identify relationships among doc in the answer set

- **Utilization of local and global analysis techniques to the Web environments**
 - How to alleviate the computational burden imposed on the search engine?

Adapted from Prof. Lin-shan Lee

The 16 Blocks for major semantic concepts or topics in the category of "local political news."