Linear Algebra

Berlin Chen
Department of Computer Science & Information Engineering
National Taiwan Normal University
Linear Algebra

- Linear algebra is a branch of mathematics and continues to figure prominently in computer science and electrical engineering
 - Computation, geometry, theory, practical applications, to name just a few

- Simply put, linear algebra is the study of vectors, matrices, vector spaces and linear transformations

\[a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\
 \vdots \quad \vdots \quad \vdots \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \\
\]

\[\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
 \vdots & \vdots & \vdots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \\
\end{bmatrix} \]
Main Objectives

• Develop the definitions, concepts and theories associated with linear algebra
 – Fundamentals: vectors operations, matrices operations, determinants, Euclidean vector spaces, linear systems, etc.
 – Further topics: matrix diagonalization, matrix factorization, linear transforms, numerical methods, practical applications, etc.

• Learn to make effective use of linear algebra in dealing with practical issues of interest
 – E.g., multimedia (text, speech, music and image) processing

- Start with a matrix describing the intra- and Inter-document statistics between all terms and all documents
- Singular value decomposition (SVD) is then performed on the matrix to project all term and document vectors onto a reduced latent topical space
- In the context of information retrieval (IR), matching between queries and documents can be carried out in this topical space
Textbook & Course Website

 Website

- Course Website
 http://berlin.csie.ntnu.edu.tw/Courses/LinearAlgebra/2013F-LA_Main.htm
Reference Books

 – Website
 http://www.laylinalgebra.com/

 – Website
 http://www.athenasc.com/probbook.html
Tentative Topic List

<table>
<thead>
<tr>
<th></th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Systems of Linear Equations and Matrices</td>
</tr>
<tr>
<td>2.</td>
<td>Determinants</td>
</tr>
<tr>
<td>3.</td>
<td>Euclidean Vector Spaces</td>
</tr>
<tr>
<td>4.</td>
<td>General Vector Spaces</td>
</tr>
<tr>
<td>5.</td>
<td>Eigenvalues and Eigenvectors</td>
</tr>
<tr>
<td>6.</td>
<td>Inner Product Spaces</td>
</tr>
<tr>
<td>7.</td>
<td>Diagonalization and Quadratic Forms</td>
</tr>
<tr>
<td>8.</td>
<td>Linear Transformations</td>
</tr>
</tbody>
</table>
Grading (*Tentatively!*)

- Midterm and Final: 45%
- Quizzes (≥ 5 times) and Homework: 45%
- Attendance/Other: 10%

- **TA：高予真同學 (語言實驗室；R208)**
 - E-mail: cybeliakao@ntu.edu.tw
 - Tel: 7734-6676